scholarly journals Bioinformatics analysis of key biomarkers and potential molecular mechanisms in hepatocellular carcinoma induced by hepatitis B virus

Medicine ◽  
2020 ◽  
Vol 99 (20) ◽  
pp. e20302
Author(s):  
Zhe Li ◽  
Jingyong Xu ◽  
Hongyuan Cui ◽  
Jinghai Song ◽  
Jian Chen ◽  
...  
Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 862
Author(s):  
Yueh-Te Lin ◽  
Long-Bin Jeng ◽  
Wen-Ling Chan ◽  
Ih-Jen Su ◽  
Chiao-Fang Teng

Hepatocellular carcinoma (HCC) is one of the most frequent and fatal human cancers worldwide and its development and prognosis are intimately associated with chronic infection with hepatitis B virus (HBV). The identification of genetic mutations and molecular mechanisms that mediate HBV-induced tumorigenesis therefore holds promise for the development of potential biomarkers and targets for HCC prevention and therapy. The presence of HBV pre-S gene deletions in the blood and the expression of pre-S deleted proteins in the liver tissues of patients with chronic hepatitis B and HBV-related HCC have emerged as valuable biomarkers for higher incidence rates of HCC development and a higher risk of HCC recurrence after curative surgical resection, respectively. Moreover, pre-S deleted proteins are regarded as important oncoproteins that activate multiple signaling pathways to induce DNA damage and promote growth and proliferation in hepatocytes, leading to HCC development. The signaling molecules dysregulated by pre-S deleted proteins have also been validated as potential targets for the prevention of HCC development. In this review, we summarize the clinical and molecular implications of HBV pre-S gene deletions and pre-S deleted proteins in HCC development and recurrence and highlight their potential applications in HCC prevention and therapy.


2021 ◽  
Vol 22 (20) ◽  
pp. 11051
Author(s):  
Sanae Hayashi ◽  
Katsuya Nagaoka ◽  
Yasuhito Tanaka

Hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC) development and is a global public health issue. High performance biomarkers can aid the early detection of HCC development in HBV-infected individuals. In addition, advances in the understanding of the pathogenesis of HBV infection and in clinical laboratory techniques have enabled the establishment of disease-specific tests, prediction of the progression of liver diseases, including HCC, and auxiliary diagnosis of HCC, using blood-based methods instead of biopsies of liver or HCC tissues. Viral factors such as the HBV genotype, HBV genetic mutations, HBV DNA, and HBV-related antigens, as well as host factors, such as tumor-associated proteins and post-translational modifications, especially glycosylated proteins, can be blood-based, disease-specific biomarkers for HCC development in HBV-infected patients. In this review, we describe the clinical applications of viral biomarkers, including the HBV genome and glycosylated proteins, for patients at a risk of HBV-related HCC, based on their molecular mechanisms. In addition, we introduce promising biomarker candidates for practical use, including colony stimulating factor 1 receptor (CSF1R), extracellular vesicles, and cell-free, circulating tumor DNA. The clinical use of such surrogate markers may lead to a better understanding of the risk of disease progression and early detection of HCC in HBV-infected patients, thereby improving their prognosis.


Author(s):  
Wenbiao Chen ◽  
Jingjing Jiang ◽  
Lan Gong ◽  
Zheyue Shu ◽  
Dairong Xiang ◽  
...  

Abstract Background Hepatitis B virus (HBV) infection is a crucial risk factor for hepatocellular carcinoma (HCC). However, its underlying mechanism remains understudied. Methods Microarray analysis was conducted to compare the genes and miRNAs in liver tissue from HBV-positive and HBV-negative HCC patients. Biological functions of these biomarkers in HBV-related HCC were validated via in vitro and in vivo experiments. Furthermore, we investigated the effect of HBV on the proliferation and migration of tumor cells in HBV-positive HCC tissue. Bioinformatics analysis was then performed to validate the clinical value of the biomarkers in a large HCC cohort. Results We found that a gene, MINPP1 from the glycolytic bypass metabolic pathway, has an important biological function in the development of HBV-positive HCC. MINPP1 is down-regulated in HBV-positive HCC and could inhibit the proliferation and migration of the tumor cells. Meanwhile, miRNA-30b-5p was found to be a stimulator for the proliferation of tumor cell through glycolytic bypass in HBV-positive HCC. More importantly, miRNA-30b-5p could significantly downregulate MINPP1 expression. Metabolic experiments showed that the miRNA-30b-5p/MINPP1 axis is able to accelerate the conversion of glucose to lactate and 2,3-bisphosphoglycerate (2,3-BPG). In the HBV-negative HCC cells, miRNA-30b-5p/MINPP1 could not regulate the glycolytic bypass to promote the tumorigenesis. However, once HBV was introduced into these cells, miRNA-30b-5p/MINPP1 significantly enhanced the proliferation, migration of tumor cells, and promoted the glycolytic bypass. We further revealed that HBV infection promoted the expression of miRNA-30b-5p through the interaction of HBV protein P (HBp) with FOXO3. Bioinformatics analysis on a large cohort dataset showed that high expression of MINPP1 was associated with favorable survival of HBV-positive HCC patients, which could lead to a slower progress of this disease. Conclusion Our study found that the HBp/FOXO3/miRNA-30b-5p/MINPP1 axis contributes to the development of HBV-positive HCC cells through the glycolytic bypass. We also presented miRNA-30b-5p/MINPP1 as a novel biomarker for HBV-positive HCC early diagnosis and a potential pharmaceutical target for antitumor therapy.


2021 ◽  
Vol 4 (9) ◽  
pp. e202101036
Author(s):  
Frank Jühling ◽  
Antonio Saviano ◽  
Clara Ponsolles ◽  
Laura Heydmann ◽  
Emilie Crouchet ◽  
...  

Chronic hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC) world-wide. The molecular mechanisms of viral hepatocarcinogenesis are still partially understood. Here, we applied two complementary single-cell RNA-sequencing protocols to investigate HBV–HCC host cell interactions at the single cell level of patient-derived HCC. Computational analyses revealed a marked HCC heterogeneity with a robust and significant correlation between HBV reads and cancer cell differentiation. Viral reads significantly correlated with the expression of HBV-dependency factors such as HLF in different tumor compartments. Analyses of virus-induced host responses identified previously undiscovered pathways mediating viral carcinogenesis, such as E2F- and MYC targets as well as adipogenesis. Mapping of fused HBV–host cell transcripts allowed the characterization of integration sites in individual cancer cells. Collectively, single-cell RNA-Seq unravels heterogeneity and compartmentalization of both, virus and cancer identifying new candidate pathways for viral hepatocarcinogenesis. The perturbation of pro-carcinogenic gene expression even at low HBV levels highlights the need of HBV cure to eliminate HCC risk.


2019 ◽  
Vol 26 (5) ◽  
pp. 485-494 ◽  
Author(s):  
Zide Chen ◽  
Jiehua Chen ◽  
Xuan Huang ◽  
Yi Wu ◽  
Kuiyuan Huang ◽  
...  

2010 ◽  
Vol 58 (4) ◽  
pp. 278-287 ◽  
Author(s):  
C. Brechot ◽  
D. Kremsdorf ◽  
P. Soussan ◽  
P. Pineau ◽  
A. Dejean ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document