Emerging Treatment Strategies in Pancreatic Cancer

Pancreas ◽  
2021 ◽  
Vol 50 (6) ◽  
pp. 773-787
Author(s):  
Andrew Trunk ◽  
Laura Miotke ◽  
Christopher Nevala-Plagemann ◽  
Helena Verdaguer ◽  
Teresa Macarulla ◽  
...  
Author(s):  
Umme Hani ◽  
Riyaz Ali M. Osmani ◽  
Ayesha Siddiqua ◽  
Shadma Wahab ◽  
Sadia Batool ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 901
Author(s):  
Ramiz S. Ahmad ◽  
Timothy D. Eubank ◽  
Slawomir Lukomski ◽  
Brian A. Boone

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of only 9%. PDAC is characterized by a dense, fibrotic stroma composed of extracellular matrix (ECM) proteins. This desmoplastic stroma is a hallmark of PDAC, representing a significant physical barrier that is immunosuppressive and obstructs penetration of cytotoxic chemotherapy agents into the tumor microenvironment (TME). Additionally, dense ECM promotes hypoxia, making tumor cells refractive to radiation therapy and alters their metabolism, thereby supporting proliferation and survival. In this review, we outline the significant contribution of fibrosis to the pathogenesis of pancreatic cancer, with a focus on the cross talk between immune cells and pancreatic stellate cells that contribute to ECM deposition. We emphasize the cellular mechanisms by which neutrophils and macrophages, specifically, modulate the ECM in favor of PDAC-progression. Furthermore, we investigate how activated stellate cells and ECM influence immune cells and promote immunosuppression in PDAC. Finally, we summarize therapeutic strategies that target the stroma and hinder immune cell promotion of fibrogenesis, which have unfortunately led to mixed results. An enhanced understanding of the complex interactions between the pancreatic tumor ECM and immune cells may uncover novel treatment strategies that are desperately needed for this devastating disease.


2017 ◽  
Author(s):  
Gregory C Wilson ◽  
Brent T Xia ◽  
Syed A Ahmed

Despite decades of advancement and research into the multimodal care of pancreatic cancer, mortality after the diagnosis of pancreatic ductal adenocarcinoma remains grim. The role of adjuvant therapy following surgical resection has been well established in the literature. However, adjuvant therapy is imperfect, and outside of a clinical trial, there are high rates of omission or delayed initiation of therapy. Neoadjuvant treatment strategies continue to be explored in the management of resectable, borderline-resectable, and locally advanced unresectable pancreatic adenocarcinoma. With improved resection rates and the possibility for tumor downstaging, neoadjuvant therapy has become standard for patients with borderline-resectable and locally advanced unresectable tumors. Additional benefits of neoadjuvant therapy in the treatment of resectable tumors include improved completion rates of systemic therapy and R0 resection rates. Future clinical trials, including the use of novel treatment agents and combination treatment strategies in both neoadjuvant and adjuvant regimens, will add value to the treatment of pancreatic adenocarcinoma. Key words: adjuvant therapy, borderline-resectable pancreatic cancer, locally advanced pancreatic cancer, neoadjuvant therapy, pancreatic adenocarcinoma, resectable disease 


2021 ◽  
Vol 135 (10) ◽  
pp. 1289-1293
Author(s):  
Gregor Werba ◽  
Tamas A. Gonda

Abstract Pancreatic ductal adenocarcinoma (PDAC) features a hostile tumor microenvironment (TME) that renders it remarkably resistant to most therapeutic interventions. Consequently, survival remains among the poorest compared with other gastrointestinal cancers. Concerted efforts are underway to decipher the complex PDAC TME, break down barriers to efficacious therapies and identify novel treatment strategies. In the recent Clinical Science, Li and colleagues identify the long noncoding RNA KLHDC7B-DT as a crucial epigenetic regulator of IL-6 transcription in PDAC and illustrate its potent influences on the pancreatic TME. In this commentary, we introduce epigenetics in pancreatic cancer and put the findings by Li et al. in context with current knowledge.


2019 ◽  
Vol 8 (11) ◽  
pp. 1945
Author(s):  
Thomas Hank ◽  
Oliver Strobel

While primarily unresectable locally advanced pancreatic cancer (LAPC) used to be an indication for palliative therapy, a strategy of neoadjuvant therapy (NAT) and conversion surgery is being increasingly used after more effective chemotherapy regimens have become available for pancreatic ductal adenocarcinoma. While high-level evidence from prospective studies is still sparse, several large retrospective studies have recently reported their experience with NAT and conversion surgery for LAPC. This review aims to provide a current overview about different NAT regimens, conversion rates, survival outcomes and determinants of post-resection outcomes, as well as surgical strategies in the context of conversion surgery after NAT. FOLFIRINOX is the predominant regimen used and associated with the highest reported conversion rates. Conversion rates considerably vary between less than 5% and more than half of the study population with heterogeneous long-term outcomes, owing to a lack of intention-to-treat analyses in most studies and a high heterogeneity in resectability criteria, treatment strategies, and reporting among studies. Since radiological criteria of local resectability are no longer applicable after NAT, patients without progressive disease should undergo surgical exploration. Surgery after NAT has to be aimed at local radicality around the peripancreatic vessels and should be performed in expert centers. Future studies in this rapidly evolving field need to be prospective, analyze intention-to-treat populations, report stringent and objective inclusion criteria and criteria for resection. Innovative regimens for NAT in combination with a radical surgical approach hold high promise for patients with LAPC in the future.


Pancreatology ◽  
2018 ◽  
Vol 18 (4) ◽  
pp. S133
Author(s):  
Tomotaka Kato ◽  
Daisuke Ban ◽  
Jun Yoshino ◽  
Toshiro Ogura ◽  
Kosuke Ogawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document