Enhancing Gonococcal Antimicrobial Resistance Surveillance in Cisgender Women, Strengthening the United States Response to Resistant Gonorrhea, 2018–2019

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Karen Wendel ◽  
Kerry Mauk ◽  
Lori Amsterdam ◽  
Candice J. McNeil ◽  
John R. Pfister ◽  
...  
mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Shaohua Zhao ◽  
Sampa Mukherjee ◽  
Chih-Hao Hsu ◽  
Shenia Young ◽  
Cong Li ◽  
...  

ABSTRACT Genomic analyses were performed on florfenicol-resistant (FFNr) Campylobacter coli isolates recovered from cattle, and the cfr(C) gene-associated multidrug resistance (MDR) plasmid was characterized. Sixteen FFNr C. coli isolates recovered between 2013 and 2018 from beef cattle were sequenced using MiSeq. Genomes and plasmids were found to be closed for three of the isolates using the PacBio system. Single nucleotide polymorphisms (SNPs) across the genome and the structures of MDR plasmids were investigated. Conjugation experiments were performed to determine the transferability of cfr(C)-associated MDR plasmids. The spectrum of resistance encoded by the cfr(C) gene was further investigated by agar dilution antimicrobial susceptibility testing. All 16 FFNr isolates were MDR and exhibited coresistance to ciprofloxacin, nalidixic acid, clindamycin, and tetracycline. All isolates shared the same resistance genotype, carrying aph (3′)-III, hph, ΔaadE (truncated), blaOXA-61, cfr(C), and tet(O) genes plus a mutation of GyrA (T86I). The cfr(C), aph (3′)-III, hph, ΔaadE, and tet(O) genes were colocated on transferable MDR plasmids ranging in size from 48 to 50 kb. These plasmids showed high sequence homology with the pTet plasmid and carried several Campylobacter virulence genes, including virB2, virB4, virB5, VirB6, virB7, virB8, virb9, virB10, virB11, and virD4. The cfr(C) gene conferred resistance to florfenicol (8 to 32 μg/ml), clindamycin (512 to 1,024 μg/ml), linezolid (128 to 512 μg/ml), and tiamulin (1,024 μg/ml). Phylogenetic analysis showed SNP differences ranging from 11 to 2,248 SNPs among the 16 isolates. The results showed that the cfr(C) gene located in the conjugative pTet MDR/virulence plasmid is present in diverse strains, where it confers high levels of resistance to several antimicrobials, including linezolid, a critical drug for treating infections by Gram-positive bacteria in humans. This report highlights the power of genomic antimicrobial resistance surveillance to uncover the intricacies of transmissible coresistance and provides information that is needed for accurate risk assessment and mitigation strategies. IMPORTANCE Campylobacter is a leading cause of foodborne diarrheal illness worldwide, with more than one million cases each year in the United States alone. The global emergence of antimicrobial resistance in this pathogen has become a growing public health concern. Florfenicol-resistant (FFNr) Campylobacter has been very rare in the United States. In this study, we employed whole-genome sequencing to characterize 16 multidrug-resistant Campylobacter coli isolates recovered from cattle in the United States. A gene [cfr(C)] was found to be responsible for resistance not only to florfenicol but also to several other antimicrobials, including linezolid, a critical drug for treating infections by Gram-positive bacteria in humans. The results showed that cfr(C) is located in a conjugative pTet MDR/virulence plasmid. This report highlights the power of antimicrobial resistance surveillance to uncover the intricacies of transmissible coresistance and provides information that is needed for accurate risk assessment and mitigation strategies.


2001 ◽  
Vol 45 (4) ◽  
pp. 1037-1042 ◽  
Author(s):  
Daniel F. Sahm ◽  
James A. Karlowsky ◽  
Laurie J. Kelly ◽  
Ian A. Critchley ◽  
Mark E. Jones ◽  
...  

ABSTRACT Although changing patterns in antimicrobial resistance inStreptococcus pneumoniae have prompted several surveillance initiatives in recent years, the frequency with which these studies are needed has not been addressed. To approach this issue, the extent to which resistance patterns change over a 1-year period was examined. In this study we analyzed S. pneumoniaeantimicrobial susceptibility results produced in our laboratory with isolates obtained over 2 consecutive years (1997–1998 and 1998–1999) from the same 96 institutions distributed throughout the United States. Comparison of results revealed increases in resistant percentages for all antimicrobial agents studied except vancomycin. For four of the agents tested (penicillin, cefuroxime, trimethoprim-sulfamethoxazole, and levofloxacin), the increases were statistically significant (P < 0.05). Resistance to the fluoroquinolone remained low in both years (0.1 and 0.6%, respectively); in contrast, resistance to macrolides was consistently greater than 20%, and resistance to trimethoprim-sulfamethoxazole increased from 13.3 to 27.3%. Multidrug resistance, concurrent resistance to three or more antimicrobials of different chemical classes, also increased significantly between years, from 5.9 to 11%. The most prevalent phenotype was resistance to penicillin, azithromycin (representative macrolide), and trimethoprim-sulfamethoxazole. Multidrug-resistant phenotypes that included fluoroquinolone resistance were uncommon; however, two phenotypes that included fluoroquinolone resistance not found in 1997–1998 were encountered in 1998–1999. This longitudinal surveillance study of resistance inS. pneumoniae revealed that significant changes do occur in just a single year and supports the need for surveillance at least on an annual basis, if not continuously.


2009 ◽  
Vol 49 (2) ◽  
pp. 195-201 ◽  
Author(s):  
James R. Johnson ◽  
James S. McCabe ◽  
David G. White ◽  
Brian Johnston ◽  
Michael A. Kuskowski ◽  
...  

1996 ◽  
Vol 40 (4) ◽  
pp. 891-894 ◽  
Author(s):  
G V Doern ◽  
M J Ferraro ◽  
A B Brueggemann ◽  
K L Ruoff

Three hundred fifty-two blood culture isolates of viridans group streptococci obtained from 43 U.S. medical centers during 1993 and 1994 were characterized. Included were 48 isolates of "Streptococcus milleri," 219 S. mitis isolates, 29 S. salivarius isolates, and 56 S. sanguis isolates. High-level penicillin resistance (MIC, > or = 4.0 micrograms/ml) was noted among 13.4% of the strains; for 42.9% of the strains, penicillin MICs were 0.25 to 2.0 micrograms/ml (i.e., intermediate resistance). In general, amoxicillin was slightly more active than penicillin. The rank order of activity for five cephalosporins versus viridans group streptococci was cefpodoxime = ceftriaxone > cefprozil = cefuroxime > cephalexin. The percentages of isolates resistant (MIC, > or = 2 micrograms/ml) to these agents were 15, 17, 18, 20, and 96, respectively. The rates of resistance to erythromycin, tetracycline, and trimethoprim-sulfamethoxazole were 12 to 38%. Resistance to either chloramphenicol or ofloxacin was uncommon (i.e., < 1%). In general, among the four species, S. mitis was the most resistant and "S. milleri" was the most susceptible.


2019 ◽  
Author(s):  
Chris Kenyon ◽  
Jolein Laumen ◽  
Dorien Van Den Bossche ◽  
Christophe Van Dijck

Abstract Background Does the emergence of antimicrobial resistance in Neisseria gonorrhoeae include the erasure of highly susceptible strains or does it merely involve a stretching of the MIC distribution? If it was the former this would be important to know as it would increase the probability that the loss of susceptibility is irreversible.Methods We conducted a historical analysis based on a literature review of changes of N. gonorrhoeae MIC distribution over the past 75 years for 3 antimicrobials (benzylpenicillin, ceftriaxone and azithromycin) in five countries (Denmark, Japan, South Africa, the United Kingdom and the United States).Results Changes in MIC distribution were most marked for benzylpenicillin and showed evidence of a right shifting of MIC distribution that was associated with a reduction/elimination of susceptible strains in all countries. In the case of ceftriaxone and azithromycin, where only more recent data was available, right shifting was also found in all countries but the extent of right shifting varied and the evidence for the elimination of susceptible strains was more mixed.Conclusions The finding of right shifting of MIC distribution combined with reduction/elimination of susceptible strains is concerning since it suggests that this shifting may not be reversible. Since excess antimicrobial consumption is likely to be responsible for this right shifting, this insight provides additional impetus to promote antimicrobial stewardship.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1237
Author(s):  
Chris R. Kenyon

In this study, we assessed if there was a city-level association between sexually transmitted infection (STI) screening intensity in men who have sex with men and antimicrobial sensitivity in Neisseria gonorrhoeae in the United States, 2007 to 2013.  We found positive associations between STI screening intensity and increases in minimum inhibitory concentrations for cefixime and azithromycin, but not ceftriaxone when using change in city geometric mean N. gonorrhoeae MIC between 2005 and 2013.


Anaerobe ◽  
2017 ◽  
Vol 43 ◽  
pp. 21-26 ◽  
Author(s):  
D.R. Snydman ◽  
N.V. Jacobus ◽  
L.A. McDermott ◽  
E.J.C. Goldstein ◽  
L. Harrell ◽  
...  

Food Control ◽  
2021 ◽  
pp. 108738
Author(s):  
Estefanía Novoa Rama ◽  
Matthew Bailey ◽  
Sanjay Kumar ◽  
Cortney Leone ◽  
Henk C. den Bakker ◽  
...  

2002 ◽  
Vol 46 (8) ◽  
pp. 2651-2655 ◽  
Author(s):  
Mark E. Jones ◽  
James A. Karlowsky ◽  
Renée Blosser-Middleton ◽  
Ian A. Critchley ◽  
Elena Karginova ◽  
...  

ABSTRACT The prevalence of antimicrobial resistance among 4,940 U.S. pneumococcal isolates collected during 1999 was as follows: penicillin, 16.2%; amoxicillin-clavulanate, 12.2%; cefuroxime, 28.1%; ceftriaxone, 3.6%; trimethoprim-sulfamethoxazole, 30.3%; azithromycin, 21.4%; levofloxacin, 0.6%; and moxifloxacin, 0.1%. Compared to the previous 1997-1998 study (Jones et al., Antimicrob. Agents Chemother. 44:2645-2652, 2000), increases were noted for resistance to penicillin (3.7%; P < 0.001), amoxicillin-clavulanate (3.9%; P < 0.001), cefuroxime (5.7%; P < 0.001), azithromycin (2.4%; P = 0.014), trimethoprim-sulfamethoxazole (15.4%; P < 0.001), and levofloxacin (0.3%; P = 0.017). Resistance to ceftriaxone (0.1%; P = 0.809) and moxifloxacin (0.03%; P = 0.570) decreased. Concurrently, multidrug resistance increased (P < 0.001) from 6.3% to 11.3%.


2015 ◽  
Vol 2 (3) ◽  
Author(s):  
Brian H. Harcourt ◽  
Raydel D. Anderson ◽  
Henry M. Wu ◽  
Amanda C. Cohn ◽  
Jessica R. MacNeil ◽  
...  

Abstract Background.  Antimicrobial treatment and chemoprophylaxis of patients and their close contacts is critical to reduce the morbidity and mortality and prevent secondary cases of meningococcal disease. Through the 1990's, the prevalence of antimicrobial resistance to commonly used antimicrobials among Neisseria meningitidis was low in the United States. Susceptibility testing was performed to ascertain whether the proportions of isolates with reduced susceptibility to antimicrobials commonly used for N meningitidis have increased since 2004 in the United States. Methods.  Antimicrobial susceptibility testing was performed by broth microdilution on 466 isolates of N meningitidis collected in 2004, 2008, 2010, and 2011 from an active, population-based surveillance system for susceptibility to ceftriaxone, ciprofloxacin, penicillin G, rifampin, and azithromycin. The molecular mechanism of reduced susceptibility was investigated for isolates with intermediate or resistant phenotypes. Results.  All isolates were susceptible to ceftriaxone and azithromycin, 10.3% were penicillin G intermediate (range, 8% in 2008–16.7% in 2010), and &lt;1% were ciprofloxacin, rifampin, or penicillin G resistant. Of the penicillin G intermediate or resistant isolates, 63% contained mutations in the penA gene associated with reduced susceptibility to penicillin G. All ciprofloxacin-resistant isolates contained mutations in the gyrA gene associated with reduced susceptibility. Conclusions.  Resistance of N meningitidis to antimicrobials used for empirical treatment of meningitis in the United States has not been detected, and resistance to penicillin G and chemoprophylaxis agents remains uncommon. Therapeutic agent recommendations remain valid. Although periodic surveillance is warranted to monitor trends in susceptibility, routine clinical testing may be of little use.


Sign in / Sign up

Export Citation Format

Share Document