scholarly journals HDAC3 Mediates Cardioprotection of Remifentanil Postconditioning by Targeting GSK-3β in H9c2 Cardiomyocytes in Hypoxia/Reoxygenation Injury

Shock ◽  
2018 ◽  
Vol 50 (2) ◽  
pp. 240-247 ◽  
Author(s):  
Manli Chen ◽  
Qin Liu ◽  
Lijian Chen ◽  
Lei Zhang ◽  
Xinqi Cheng ◽  
...  
Author(s):  
Vu Thi Thu ◽  
Ngo Thi Hai Yen

This study was conducted to evaluate the protective effect of Naringin (NAR) on H9C2 cardiomyocytes in hypoxia/reoxygenation (HR) injury in vitro induced by the hypoxia chamber. Methods: H9C2 cells were grown under normal (control) and HR conditions. The viability, cardiolipin content and mitochondrial membrane potential of H9C2 cells in experimental groups were analyzed by using suitable kits. Results: The obtained results showed that the addition of Naringin (16÷160 µM) significantly increased the survival rate of H9C2 cells under HR conditions. In particular, NAR had the highest efficiency in preserving mitochondrial function at concentrations of 80 µM and 160 µM. In HR-exposed H9C2 cell group, the cardiolipin content and mitochondrial membrane potential values of H9C2 cells were decreased sharply with that of control (71,64±1,37% and 68,12±2,78%, p<0,05). Interestingly, mitochondrial cardiolipin contents were signigicantly increased in H9C2 cells post-hypoxic treated wtih NAR at dose of 80 µM 160 µM to 87,76±1,89% and 81,09±1,21%. Additionally, post-hypoxic supplementation of NAR at concentration of 80 µM and 160 µM effectively increased mitochondrial membrane potential values. Conclusion: The obtained results are preliminary data on the effects of NAR in protecting mitochondrial-targeted cardiomyocytes against HR injury.


2021 ◽  
Vol 21 (6) ◽  
Author(s):  
Zhongbai Zhang ◽  
Xueting Qin ◽  
Zhenghui Wang ◽  
Yanchun Li ◽  
Fei Chen ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (4) ◽  
pp. e10092 ◽  
Author(s):  
Linshan Shang ◽  
Radha Ananthakrishnan ◽  
Qing Li ◽  
Nosirudeen Quadri ◽  
Mariane Abdillahi ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Haiping Ma ◽  
Yongjie Li ◽  
Tianliang Hou ◽  
Jing Li ◽  
Long Yang ◽  
...  

Subject: Cardiovascular disease, as a very common and serious coexisting disease in diabetic patients, and is one of the risk factors that seriously affect the prognosis and complications of surgical patients. Previous studies have shown that sevoflurane post-conditioning (SPostC) exerts a protective effect against myocardial ischemia/reperfusion injury by HIF-1α, but the protective effect is weakened or even disappeared under hyperglycemia. This study aims to explore whether regulating the HIF-1α/MIF/AMPK signaling pathway can restore the protective effect and reveal the mechanism of SPostC on cardiomyocyte hypoxia/reoxygenation injury under high glucose conditions.Methods: H9c2 cardiomyocytes were cultured in normal and high-concentration glucose medium to establish a hypoxia/reoxygenation (H/R) injury model of cardiomyocytes. SPostC was performed with 2.4% sevoflurane for 15 min before reoxygenation. Cell damage was determined by measuring cell viability, lactate dehydrogenase activity, and apoptosis; Testing cell energy metabolism by detecting reactive oxygen species (ROS) generation, ATP content and mitochondrial membrane potential; Analysis of the change of HIF-1α, MIF and AMPKα mRNA expression by RT-PCR. Western blotting was used to examine the expression of HIF-1α, MIF, AMPKα and p-AMPKα proteins. HIF-1α and MIF inhibitors and agonists were administered 40 min before hypoxia.Results: 1) SPostC exerts a protective effect by increasing cell viability, reducing LDH levels and cell apoptosis under low glucose (5 μM) after undergoing H/R injury; 2) High glucose concentration (35 μM) eliminated the cardioprotective effect of SPostC, which is manifested by a significantly decrease in the protein and mRNA expression level of the HIF-1α/MIF/AMPK signaling pathway, accompanied by decreased cell viability, increased LDH levels and apoptosis, increased ROS production, decreased ATP synthesis, and decreased mitochondrial membrane potential; 3. Under high glucose (35 μM), the expression levels of HIF-1α and MIF were up-regulated by using agonists, which can significantly increase the level of p-AMPKα protein, and the cardioprotective effect of SPostC was restored.Conclusion: The signal pathway of HIF-1α/MIF/AMPK of H9c2 cardiomyocytes may be the key point of SPostC against H/R injure. The cardioprotective of SPostC could be restored by upregulating the protein expression of HIF-1α and MIF under hyperglycemia.


Sign in / Sign up

Export Citation Format

Share Document