scholarly journals Sevoflurane Postconditioning Attenuates Hypoxia/Reoxygenation Injury of Cardiomyocytes Under High Glucose by Regulating HIF-1α/MIF/AMPK Pathway

2021 ◽  
Vol 11 ◽  
Author(s):  
Haiping Ma ◽  
Yongjie Li ◽  
Tianliang Hou ◽  
Jing Li ◽  
Long Yang ◽  
...  

Subject: Cardiovascular disease, as a very common and serious coexisting disease in diabetic patients, and is one of the risk factors that seriously affect the prognosis and complications of surgical patients. Previous studies have shown that sevoflurane post-conditioning (SPostC) exerts a protective effect against myocardial ischemia/reperfusion injury by HIF-1α, but the protective effect is weakened or even disappeared under hyperglycemia. This study aims to explore whether regulating the HIF-1α/MIF/AMPK signaling pathway can restore the protective effect and reveal the mechanism of SPostC on cardiomyocyte hypoxia/reoxygenation injury under high glucose conditions.Methods: H9c2 cardiomyocytes were cultured in normal and high-concentration glucose medium to establish a hypoxia/reoxygenation (H/R) injury model of cardiomyocytes. SPostC was performed with 2.4% sevoflurane for 15 min before reoxygenation. Cell damage was determined by measuring cell viability, lactate dehydrogenase activity, and apoptosis; Testing cell energy metabolism by detecting reactive oxygen species (ROS) generation, ATP content and mitochondrial membrane potential; Analysis of the change of HIF-1α, MIF and AMPKα mRNA expression by RT-PCR. Western blotting was used to examine the expression of HIF-1α, MIF, AMPKα and p-AMPKα proteins. HIF-1α and MIF inhibitors and agonists were administered 40 min before hypoxia.Results: 1) SPostC exerts a protective effect by increasing cell viability, reducing LDH levels and cell apoptosis under low glucose (5 μM) after undergoing H/R injury; 2) High glucose concentration (35 μM) eliminated the cardioprotective effect of SPostC, which is manifested by a significantly decrease in the protein and mRNA expression level of the HIF-1α/MIF/AMPK signaling pathway, accompanied by decreased cell viability, increased LDH levels and apoptosis, increased ROS production, decreased ATP synthesis, and decreased mitochondrial membrane potential; 3. Under high glucose (35 μM), the expression levels of HIF-1α and MIF were up-regulated by using agonists, which can significantly increase the level of p-AMPKα protein, and the cardioprotective effect of SPostC was restored.Conclusion: The signal pathway of HIF-1α/MIF/AMPK of H9c2 cardiomyocytes may be the key point of SPostC against H/R injure. The cardioprotective of SPostC could be restored by upregulating the protein expression of HIF-1α and MIF under hyperglycemia.

Author(s):  
Vu Thi Thu ◽  
Ngo Thi Hai Yen

This study was conducted to evaluate the protective effect of Naringin (NAR) on H9C2 cardiomyocytes in hypoxia/reoxygenation (HR) injury in vitro induced by the hypoxia chamber. Methods: H9C2 cells were grown under normal (control) and HR conditions. The viability, cardiolipin content and mitochondrial membrane potential of H9C2 cells in experimental groups were analyzed by using suitable kits. Results: The obtained results showed that the addition of Naringin (16÷160 µM) significantly increased the survival rate of H9C2 cells under HR conditions. In particular, NAR had the highest efficiency in preserving mitochondrial function at concentrations of 80 µM and 160 µM. In HR-exposed H9C2 cell group, the cardiolipin content and mitochondrial membrane potential values of H9C2 cells were decreased sharply with that of control (71,64±1,37% and 68,12±2,78%, p<0,05). Interestingly, mitochondrial cardiolipin contents were signigicantly increased in H9C2 cells post-hypoxic treated wtih NAR at dose of 80 µM 160 µM to 87,76±1,89% and 81,09±1,21%. Additionally, post-hypoxic supplementation of NAR at concentration of 80 µM and 160 µM effectively increased mitochondrial membrane potential values. Conclusion: The obtained results are preliminary data on the effects of NAR in protecting mitochondrial-targeted cardiomyocytes against HR injury.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2659 ◽  
Author(s):  
Jin Yu ◽  
Jianjiang Wu ◽  
Peng Xie ◽  
Yiliyaer Maimaitili ◽  
Jiang Wang ◽  
...  

Background Anesthetic postconditioning is a cellular protective approach whereby exposure to a volatile anesthetic renders a tissue more resistant to subsequent ischemic/reperfusion event. Sevoflurane postconditioning (SPostC) has been shown to exert cardioprotection against ischemia/reperfusion injury, but the underlying mechanism is unclear. We hypothesized that SPostC protects cardiomyocytes against hypoxia/reoxygenation (H/R) injury by maintaining/restoring mitochondrial morphological integrity, a critical determinant of cell fate. Methods Primary cultures of neonatal rat cardiomyocytes (NCMs) were subjected to H/R injury (3 h of hypoxia followed by 3 h reoxygenation). Intervention with SPostC (2.4% sevoflurane) was administered for 15 min upon the onset of reoxygenation. Cell viability, Lactate dehydrogenase (LDH) level, cell death, mitochondrial morphology, mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening were assessed after intervention. Mitochondrial fusion and fission regulating proteins (Drp1, Fis1, Mfn1, Mfn2 and Opa1) were assessed by immunofluorescence staining and western blotting was performed to determine the level of protein expression. Results Cardiomyocyte H/R injury resulted in significant increases in LDH release and cell death that were concomitant with reduced cell viability and reduced mitochondrial interconnectivity (mean area/perimeter ratio) and mitochondrial elongation, and with reduced mitochondrial membrane potential and increased mPTP opening. All the above changes were significantly attenuated by SPostC. Furthermore, H/R resulted in significant reductions in mitochondrial fusion proteins Mfn1, Mfn2 and Opa1 and significant enhancement of fission proteins Drp1 and Fis1. SPostC significantly enhanced Mfn2 and Opa1 and reduced Drp1, without significant impact on Mfn1 and Fis1. Conclusions Sevoflurane postconditioning attenuates cardiomyocytes hypoxia/reoxygenation injury (HRI) by restoring mitochondrial fusion/fission balance and morphology.


2014 ◽  
Vol 556-562 ◽  
pp. 610-614
Author(s):  
Shu Liang Song ◽  
Wei Wang ◽  
Xiao Chen Wang ◽  
Hao Liang ◽  
Yun Shan Wang ◽  
...  

In this study the effect of fucoidan SJP-3 extracted from Stichopus Japonicus was used to evaluate the protective effect on PC12 cells with hypoxia/reoxygenation injury. SJP-3 can stabilize the mitochondrial membrane potential and resistant Cyt-C/mitochondrial apoptotic pathway via increasing the Bcl-2 expression and decreasing expression of the Bax, caspase-3, caspase-9 suggesting that SJP-3 may exert a protective effects on neural cells with hypoxia/reoxygenation injury through the protection of mitochondria, the stability of mitochondrial membrane potential and inhibition of mitochondrial apoptosis pathway.


2021 ◽  
Author(s):  
Yu-jia Huang ◽  
Hai-ying Tong ◽  
Xian-ju Huang ◽  
Xin-Cai Xiao ◽  
Yue Dong ◽  
...  

Abstract Anshen Buxin Liuwei pill (ABLP), a Mongolian medicinal formula, composed of the six medicinal materials of Mongolian medicine Bos taurus domesticus Gmelin, Choerospondias axillaris (Roxb. ) Burtt et Hill, Myristica fragrans Houtt., Eugenia caryophµllata Thunb., Aucklandia lappa Decne., Liqui dambar formosana Hance, is considered to have a therapeutic effect on the symptoms such as coronary heart disease, angina pectoris, arrhythmia, depression and irritability, palpitation, and shortness of breath. Therefore, the present study was employed a network pharmacology approach to identify the potentially active ingredients and to evaluate the protective effect of ABLP on hypoxia/reoxygenation (HR)-induced H9c2 cardiomyocytes, and its influence on cell viability, apoptosis, oxidative stress. H9c2 cardiomyocytes were used to construct a HR injury model. CCK-8 assay and AnnexinV-FITC cell apoptosis assays were used for cell viability and cell apoptosis determination. The levels of LDH, SOD, MDA, CAT, CK, GSH-Px, Na+-K+-ATPase, and Ca2+-ATPase in the cells were determined to assess the effect of ABLP. the mRNA levels of Sirtuin3 (Sirt3) and Cytochrome C (Cytc) in H9c2 cells were determined by quantitative real-time PCR. The finding of this study indicates that HR treatment cells began to shrink from the spindle in an irregular shape with some floated in the medium, well by increasing the therapeutic dose of ABLP (5 µg/mL, 25 µg/mL, and 50 µg/mL), the cells gradually reconverted in a concentration-dependent manner. The release of CK in HR-treated cells was significantly increased, indicating that ABLP exerts a protective effect in H9c2 cells against HR injury and can improve the mitochondrial energy metabolism and mitochondrial function integrity. The present study scrutinized the cardio-protective effect of ABLP against the HR-induced H9c2 cells injury through antioxidant and mitochondrion pathways. ABLP could be a promising therapeutic drug for the treatment of myocardial ischemic cardiovascular disease. The results will provide reasonable information for clinical use of the ABLP.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zhen Qiu ◽  
Yuhong He ◽  
Hao Ming ◽  
Shaoqing Lei ◽  
Yan Leng ◽  
...  

Diabetes aggravates myocardial ischemia-reperfusion (I/R) injury because of the combination effects of changes in glucose and lipid energy metabolism, oxidative stress, and systemic inflammatory response. Studies have indicated that myocardial I/R may coincide and interact with sepsis and inflammation. However, the role of LPS in hypoxia/reoxygenation (H/R) injury in cardiomyocytes under high glucose conditions is still unclear. Our objective was to examine whether lipopolysaccharide (LPS) could aggravate high glucose- (HG-) and hypoxia/reoxygenation- (H/R-) induced injury by upregulating ROS production to activate NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. H9C2 cardiomyocytes were exposed to HG (30 mM) condition with or without LPS, along with caspase-1 inhibitor (Ac-YVAD-CMK), inflammasome inhibitor (BAY11-7082), ROS scavenger N-acetylcysteine (NAC), or not for 24 h, then subjected to 4 h of hypoxia followed by 2 h of reoxygenation (H/R). The cell viability, lactate dehydrogenase (LDH) release, caspase-1 activity, and intracellular ROS production were detected by using assay kits. The incidence of pyroptosis was detected by calcein-AM/propidium iodide (PI) double staining kit. The concentrations of IL-1β and IL-18 in the supernatants were assessed by ELISA. The mRNA levels of NLRP3, ASC, and caspase-1 were detected by qRT-PCR. The protein levels of NF-κB p65, NLRP3, ASC, cleaved caspase-1 (p10), IL-1β, and IL-18 were detected by western blot. The results indicated that pretreatment LPS with 1 μg/ml not 0.1 μg/ml could efficiently aggravate HG and H/R injury by activating NLRP3 inflammasome to mediate pyroptosis in H9C2 cells, as evidenced by increased LDH release and decreased cell viability in the cells, and increased expression of NLRP3, ASC, cleaved caspase-1 (p10), IL-1β, and IL-18. Meanwhile, Ac-YVAD-CMK, BAY11-7082, or NAC attenuated HG- and H/R-induced H9C2 cell injury with LPS stimulated by reversing the activation of NLRP3 inflammasome-mediated pyroptosis. In conclusion, LPS could increase the sensitivity of H9C2 cells to HG and H/R and aggravated HG- and H/R-induced H9C2 cell injury by promoting ROS production to induce NLRP3 inflammasome-mediated pyroptosis.


2017 ◽  
Vol 15 (3) ◽  
pp. 229-238 ◽  
Author(s):  
Hong Li ◽  
Chuan-Shi Xiao ◽  
Yun-Fei Bian ◽  
Rui Bai ◽  
Fen Gao

Objective: This study investigated whether and how intermedin (IMD) exerted a protective effect against simulated hypoxia/reoxygenation (H/R) injury in high-glucose-treated H9c2 cells. Methods: Cellular viability was assessed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Oxidative stress was determined by malondialdehyde and superoxide dismutase content in the culture medium supernatant. Flow cytometry with Annexin V/propidium iodide staining was used to detect the cardiomyocyte apoptosis rate. The protein expression of Bax, Bcl-2, caspase-3, and ERK1/2 was determined by western blot. Results: IMD administration to H9c2 cells during H/R injury decreased oxidative stress product generation and inhibited apoptosis ( P < 0.05 or P < 0.01) while these effects were blocked by the ERK1/2 inhibitor ( P < 0.05 or P < 0.01). Through the application of a specific ERK1/2 inhibitor, it was demonstrated that IMD mitigates high-glucose-induced oxidative stress and apoptosis via ERK1/2 signaling. Conclusion: Intermedin may be a novel therapeutic agent for mitigating diabetic cardiovascular injury in the clinical setting.


Sign in / Sign up

Export Citation Format

Share Document