Single Pulse and Pulse Train Modulation of Cutaneous Electrical Stimulation: A Comparison of Methods

2009 ◽  
Vol 26 (1) ◽  
pp. 54-60 ◽  
Author(s):  
Esther M. van der Heide ◽  
Jan R. Buitenweg ◽  
Enrico Marani ◽  
Wim L. C. Rutten
2009 ◽  
Vol 297 (4) ◽  
pp. G672-G680 ◽  
Author(s):  
P. Du ◽  
S. Li ◽  
G. O'Grady ◽  
L. K. Cheng ◽  
A. J. Pullan ◽  
...  

Gastric electrical stimulation (GES) involves the delivery of electrical impulses to the stomach for therapeutic purposes. New GES protocols are needed that are optimized for improved motility outcomes and energy efficiency. In this study, a biophysically based smooth muscle cell (SMC) model was modified on the basis of experimental data and employed in conjunction with experimental studies to define the effects of a large range of GES protocols on individual SMCs. For the validation studies, rat gastric SMCs were isolated and subjected to patch-clamp analysis during stimulation. Experimental results were in satisfactory agreement with simulation results. The results define the effects of a wide range of GES parameters (pulse width, amplitude, and pulse-train frequency) on isolated SMCs. The minimum pulse width required to invoke a supramechanical threshold response from SMCs (defined at −30 mV) was 65 ms (at 250-pA amplitude). The minimum amplitude required to invoke this threshold was 75 pA (at 1,000-ms pulse width). The amplitude of the invoked response beyond this threshold was proportional to the stimulation amplitude. A high-frequency train of stimuli (40 Hz; 10 ms, 150 pA) could invoke and maintain the SMC plateau phase while requiring 60% less power and accruing ∼30% less intracellular Ca2+ concentration during the plateau phase than a comparable single-pulse protocol could in a demonstrated example. Validated computational simulations are an effective strategy for efficiently identifying effective minimum-energy GES protocols, and pulse-train protocols may also help to reduce the power consumption of future GES devices.


2021 ◽  
Vol 353 ◽  
pp. 109092
Author(s):  
Eloïse Gronlier ◽  
Estelle Vendramini ◽  
Julien Volle ◽  
Agata Wozniak-Kwasniewska ◽  
Noelia Antón Santos ◽  
...  

2015 ◽  
Vol 36 (11) ◽  
pp. 4714-4729 ◽  
Author(s):  
Kiyohide Usami ◽  
Riki Matsumoto ◽  
Katsuya Kobayashi ◽  
Takefumi Hitomi ◽  
Akihiro Shimotake ◽  
...  

2020 ◽  
Author(s):  
Britni Crocker ◽  
Lauren Ostrowski ◽  
Ziv M. Williams ◽  
Darin D. Dougherty ◽  
Emad N. Eskandar ◽  
...  

AbstractBackgroundMeasuring connectivity in the human brain can involve innumerable approaches using both noninvasive (fMRI, EEG) and invasive (intracranial EEG or iEEG) recording modalities, including the use of external probing stimuli, such as direct electrical stimulation.Objective/HypothesisTo examine how different measures of connectivity correlate with one another, we compared ‘passive’ measures of connectivity during resting state conditions map to the more ‘active’ probing measures of connectivity with single pulse electrical stimulation (SPES).MethodsWe measured the network engagement and spread of the cortico-cortico evoked potential (CCEP) induced by SPES at 53 total sites across the brain, including cortical and subcortical regions, in patients with intractable epilepsy (N=11) who were undergoing intracranial recordings as a part of their clinical care for identifying seizure onset zones. We compared the CCEP network to functional, effective, and structural measures of connectivity during a resting state in each patient. Functional and effective connectivity measures included correlation or Granger causality measures applied to stereoEEG (sEEGs) recordings. Structural connectivity was derived from diffusion tensor imaging (DTI) acquired before intracranial electrode implant and monitoring (N=8).ResultsThe CCEP network was most similar to the resting state voltage correlation network in channels near to the stimulation location. In contrast, the distant CCEP network was most similar to the DTI network. Other connectivity measures were not as similar to the CCEP network.ConclusionsThese results demonstrate that different connectivity measures, including those derived from active stimulation-based probing, measure different, complementary aspects of regional interrelationships in the brain.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Yongbin Wang ◽  
Qian Wang ◽  
Kudelaidi Kuerban ◽  
Mengxue Dong ◽  
Feilong Qi ◽  
...  

Abstract Slow transit constipation (STC) is a common disease characterized by markedly delayed colonic transit time as a result of colonic motility dysfunction. It is well established that STC is mostly caused by disorders of relevant nerves, especially the enteric nervous system (ENS). Colonic electrical stimulation (CES) has been regarded as a valuable alternative for the treatment of STC. However, little report focuses on the underlying nervous mechanism to normalize the delayed colonic emptying and relieve symptoms. In the present study, the therapeutic effect and the influence on ENS triggered by CES were investigated in STC beagles. The STC beagle model was established by oral administration of diphenoxylate/atropine and alosetron. Histopathology, electron microscopy, immunohistochemistry, Western blot analysis and immunofluorescence were used to evaluate the influence of pulse train CES on myenteric plexus neurons. After 5 weeks of treatment, CES could enhance the colonic electromyogram (EMG) signal to promote colonic motility, thereby improving the colonic content emptying of STC beagles. HE staining and transmission electron microscopy confirmed that CES could regenerate ganglia and synaptic vesicles in the myenteric plexus. Immunohistochemical staining showed that synaptophysin (SYP), protein gene product 9.5 (PGP9.5), cathepsin D (CAD) and S-100B in the colonic intramuscular layer were up-regulated by CES. Western blot analysis and immunofluorescence further proved that CES induced the protein expression of SYP and PGP9.5. Taken together, pulse train CES could induce the regeneration of myenteric plexus neurons, thereby promoting the colonic motility in STC beagles.


Seizure ◽  
2017 ◽  
Vol 44 ◽  
pp. 27-36 ◽  
Author(s):  
Riki Matsumoto ◽  
Takeharu Kunieda ◽  
Dileep Nair

2005 ◽  
Vol 4 (11) ◽  
pp. 718-726 ◽  
Author(s):  
Antonio Valentín ◽  
Gonzalo Alarcón ◽  
Mrinalini Honavar ◽  
Jorge J García Seoane ◽  
Richard P Selway ◽  
...  

1989 ◽  
Vol 13 (2) ◽  
pp. 116-122 ◽  
Author(s):  
Anton Moritz ◽  
Sharon Grundfest-Broniatowski ◽  
Laszlo Ilyes ◽  
Jerry Kasick ◽  
Gordon Jacobs ◽  
...  

Neuroscience ◽  
2010 ◽  
Vol 170 (2) ◽  
pp. 623-632 ◽  
Author(s):  
M.E. Lacruz ◽  
A. Valentín ◽  
J.J. García Seoane ◽  
R.G. Morris ◽  
R.P. Selway ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document