scholarly journals Correlated evolution of maternally derived yolk testosterone and early developmental traits in passerine birds

2005 ◽  
Vol 1 (4) ◽  
pp. 461-464 ◽  
Author(s):  
K.B Gorman ◽  
T.D Williams

Recent studies on hormone-mediated maternal effects in birds have highlighted the influence of variable maternal yolk androgen concentration on offspring phenotype, particularly in terms of early development. If genetic differences between laying females regulate variation in yolk hormone concentration, then this physiological maternal effect is an indirect genetic effect which can provide a basis for the co-evolution of maternal and offspring phenotypes. Thus, we investigated the evolutionary associations between maternally derived yolk testosterone (T) and early developmental traits in passerine birds via a comparative, phylogenetic analysis. Our results from species-correlation and independent contrasts analyses provide convergent evidence for the correlated evolution of maternal yolk T concentration and length of the prenatal developmental period in passerines. Here, we show these traits are significantly negatively associated (species-correlation: p <0.001, r 2 =0.85; independent contrasts: p =0.005). Our results highlight the need for more studies investigating the role of yolk hormones in evolutionary processes concerning maternal effects.

2016 ◽  
Vol 283 (1838) ◽  
pp. 20161676 ◽  
Author(s):  
Barbara Tschirren ◽  
Ann-Kathrin Ziegler ◽  
Joel L. Pick ◽  
Monika Okuliarová ◽  
Michal Zeman ◽  
...  

Sex-linkage is predicted to evolve in response to sex-specific or sexually antagonistic selection. In line with this prediction, most sex-linked genes are associated with reproduction in the respective sex. In addition to traits directly involved in fertility and fecundity, mediators of maternal effects may be predisposed to evolve sex-linkage, because they indirectly affect female fitness through their effect on offspring phenotype. Here, we test for sex-linked inheritance of a key mediator of prenatal maternal effects in oviparous species, the transfer of maternally derived testosterone to the eggs. Consistent with maternal inheritance, we found that in Japanese quail ( Coturnix japonica ) granddaughters resemble their maternal (but not their paternal) grandmother in yolk testosterone deposition. This pattern of resemblance was not due to non-genetic priming effects of testosterone exposure during prenatal development, as an experimental manipulation of yolk testosterone levels did not affect the females' testosterone transfer to their own eggs later in life. Instead, W chromosome and/or mitochondrial variation may underlie the observed matrilineal inheritance pattern. Ultimately, the inheritance of mediators of maternal effects along the maternal line will allow for a fast and direct response to female-specific selection, thereby affecting the dynamics of evolutionary processes mediated by maternal effects.


Twin Research ◽  
1999 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Inga Peter ◽  
Michael Vainder ◽  
Gregory Livshits

AbstractThe age of attainment for four motor developmental traits, such as turning over, sitting up without support, pulling up to a standing position and walking without support, was examined in 822 children, including 626 siblings from families with 2 to 6 children, 68 pairs of dizygotic twins and 30 pairs of monozygotic twins. Correlation analysis, carried out separately for each type of sibship, showed the highest pairwise correlations in monozygotic twins and the lowest correlation in non-twin siblings for all motor milestones. Variance component analysis was used to decompose the different independent components forming the variation of the studied trait, such as genetic effect, common twin environment, common sib environment and residual factors. The results revealed that the major proportion of the total variance after adjustment for gestation age for the attainment of each motor skill, except pulling up to standing position, is explained by the common twin environment (50.5 to 66.6%), whilst a moderate proportion is explained by additive genetic factors (22.2 to 33.5%). Gestational age was found to be an important predictor of appearance of all motor milestones, affecting delay of 4.5 to 8.6 days for the attainment of the motor abilities for each week of earlier gestation. The age of attainment of the standing position was affected only by shared sibs environment (33.3% of the total variance) and showed no influence of either genetic or common twin environment. Phenotypic between trait correlations were high and significant for all studied traits (range between 0.40 and 0.67, P < 0.01 in all instances). Genetic cross correlations, however, were not easily interpreted and did not show clear variance trends among the different groups of children.


1996 ◽  
Vol 1996 ◽  
pp. 20-20
Author(s):  
J. H. Catterall ◽  
G. E. Pollott

Previous research into the genetics of broiler traits in a commercial breeding operation found a significant maternal effect on juvenile body weight, at 32 days of age, in addition to the additive genetic effect (Morris and Pollott, 1995). Since no nurture or imitative behaviour occurs between the dam and offspring in modem broiler production, any maternal effects are likely to be conferred to the offspring via the egg. This study attempts to investigate the nature of these effects.Pedigreed eggs from two separate broiler breeding lines, one experimental male line and one experimental female line, were individually weighed prior to incubation. In total 2871 eggs were weighed, 1887 eggs from the experimental female line and 984 eggs from experimental male line.


2018 ◽  
Author(s):  
Arthur Bernard ◽  
Nicolas Bredeche ◽  
Jean-Baptiste André

Social interactions involving coordination between individuals are subject to an “evolutionary trap.” Once a suboptimal strategy has evolved, mutants playing an alternative strategy are counterselected because they fail to coordinate with the majority. This creates a detrimental situation from which evolution cannot escape, preventing the evolution of efficient collective behaviours. Here, we study this problem using the framework of evolutionary robotics. We first confirm the existence of an evolutionary trap in a simple setting. We then, however, reveal that evolution can solve this problem in a more realistic setting where individuals need to coordinate with one another. In this setting, robots evolve an ability to adapt plastically their behaviour to one another, as this improves the efficiency of their interaction. This ability has an unintended evolutionary consequence: a genetic mutation affecting one individual’s behaviour also indirectly alters their partner’s behaviour because the two individuals influence one another. As a consequence of this indirect genetic effect, pairs of partners can virtually change strategy together with a single mutation, and the evolutionary barrier between alternative strategies disappears. This finding reveals a general principle that could play a role in nature to smoothen the transition to efficient collective behaviours in all games with multiple equilibriums.


2020 ◽  
Author(s):  
Roberto Moreno-Ayala ◽  
Pedro Olivares-Chauvet ◽  
Ronny Schäfer ◽  
Jan Philipp Junker

Embryonic development seemingly proceeds with almost perfect precision. However, it is largely unknown how much underlying microscopic variability is compatible with normal development. Here, we quantified embryo-to-embryo variability in vertebrate development, by studying cell number variation in the zebrafish endoderm. We noticed that the size of a sub- population of the endoderm, the dorsal forerunner cells (which later form the left-right organizer), exhibits significantly more embryo-to-embryo variation than the rest of the endoderm. We found that, when incubated at elevated temperature, the frequency of left-right laterality defects is increased drastically in embryos with a low number of dorsal forerunner cells. Furthermore, we observed that these fluctuations have a large stochastic component among fish of the same genetic background. Hence, a stochastic variation in early development leads to a remarkably strong macroscopic phenotype. These fluctuations appear to be associated with maternal effects in the specification of the dorsal forerunner cells.


2020 ◽  
Vol 375 (1797) ◽  
pp. 20190360 ◽  
Author(s):  
P. Bijma

The genetic response to selection is central to both evolutionary biology and animal and plant breeding. While Price's theorem (PT) is well-known in evolutionary biology, most breeders are unaware of it. Rather than using PT, breeders express response to selection as the product of the intensity of selection ( i ), the accuracy of selection ( ρ ) and the additive genetic standard deviation ( σ A ); R = iρσ A . In contrast to the univariate ‘breeder's equation’, this expression holds for multivariate selection on Gaussian traits. Here, I relate R = iρσ A to PT, and present a generalized version, R = i w ρ A , w σ A , valid irrespective of the trait distribution. Next, I consider genotype–environment covariance in relation to the breeder's equation and PT, showing that the breeder's equation may remain valid depending on whether the genotype–environment covariance works across generations. Finally, I consider the response to selection in the prevalence of an endemic infectious disease, as an example of an emergent trait. The result shows that disease prevalence has much greater heritable variation than currently believed. The example also illustrates that the indirect genetic effect approach moves elements of response to selection from the second to the first term of PT, so that changes acting via the social environment come within the reach of quantitative genetics. This article is part of the theme issue ‘Fifty years of the Price equation’.


2018 ◽  
Vol 285 (1876) ◽  
pp. 20172763
Author(s):  
Simon R. Evans ◽  
Dominique Waldvogel ◽  
Nina Vasiljevic ◽  
Erik Postma

Sexual reproduction is inherently interactive, especially in animal species such as humans that exhibit extended pair bonding. Yet we have little knowledge of the role of male characteristics and their evolutionary impact on reproductive behavioural phenotypes, to the extent that biologists typically consider component traits (e.g. reproductive timing) as female-specific. Based on extensive genealogical data detailing the life histories of 6435 human mothers born across four centuries of modern history, we use an animal modelling approach to estimate the indirect genetic effect of men on the reproductive phenotype of their partners. These analyses show that a woman's reproductive timing (age at first birth) is influenced by her partner's genotype. This indirect genetic effect is positively correlated with the direct genetic effect expressed in women, such that total heritable variance in this trait is doubled when heritable partner effects are considered. Our study thus suggests that much of the heritable variation in women's reproductive timing is mediated via partner effects, and that the evolutionary potential of this trait is far greater than previously appreciated.


2013 ◽  
Vol 43 (12) ◽  
pp. 2215-2220 ◽  
Author(s):  
Priscilla Regina Tamioso ◽  
Jaime Luiz Alberti Filho ◽  
Laila Talarico Dias ◽  
Rodrigo de Almeida Teixeira

The study aimed to estimate the components of (co)variance and heritability for weights at birth (BW), weaning (WW) and 180 days of age (W180), as well as the average daily gains from birth to weaning (ADG1), birth to 180 days of age (ADG2) and weaning to 180 days of age (ADG3) in Suffolk sheep. Thus, three different single-trait animal models were fitted, considering the direct additive genetic effect (Model 1), the direct additive genetic and maternal permanent environmental effects (Model 2), and in Model 3, in addition to those in Model 2, the maternal additive genetic effect was included. After comparing models through the likelihood ratio test (LRT), model 3 was chosen as the most appropriate to estimate heritability for BW, WW and ADG1. Model 2 was considered as the best to estimate the coefficient of heritability for W180 and ADG2, and model 1 for ADG3. Direct heritability estimates were inflated when maternal effects were ignored. According to the most suitable models, the heritability estimates for BW, WW, W180, ADG1, ADG2 and ADG3 were 0.06, 0.08, 0.09, 0.07, 0.08 and 0.07, respectively, indicating low possibility of genetic gain through individual selection. The results show the importance of including maternal effects in the models to properly estimate genetic parameters even at post-weaning ages.


Sign in / Sign up

Export Citation Format

Share Document