scholarly journals Nocturnal insects use optic flow for flight control

2011 ◽  
Vol 7 (4) ◽  
pp. 499-501 ◽  
Author(s):  
Emily Baird ◽  
Eva Kreiss ◽  
William Wcislo ◽  
Eric Warrant ◽  
Marie Dacke

To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis , flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta , we repeated the experiments on day-active bumble-bees ( Bombus terrestris ). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta —like their day-active relatives—rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects.

Author(s):  
Olivier J.N. Bertrand ◽  
Charlotte Doussot ◽  
Tim Siesenop ◽  
Sridhar Ravi ◽  
Martin Egelhaaf

One persistent question in animal navigation is how animals follow habitual routes between their home and a food source. Our current understanding of insect navigation suggests an interplay between visual memories, collision avoidance and path integration, the continuous integration of distance and direction travelled. However, these behavioural modules have to be continuously updated with instantaneous visual information. In order to alleviate this need, the insect could learn and replicate habitual movements (“movement memories”) around objects (e.g. a bent trajectory around an object) to reach its destination. We investigated whether bumblebees, Bombus terrestris, learn and use movement memories en route to their home. Using a novel experimental paradigm, we habituated bumblebees to establish a habitual route in a flight tunnel containing “invisible” obstacles. We then confronted them with conflicting cues leading to different choice directions depending on whether they rely on movement or visual memories. The results suggest that they use movement memories to navigate, but also rely on visual memories to solve conflicting situations. We investigated whether the observed behaviour was due to other guidance systems, such as path integration or optic flow-based flight control, and found that neither of these systems was sufficient to explain the behaviour.


Author(s):  
Rebecca Grittner ◽  
Emily Baird ◽  
Anna Stöckl

AbstractTo safely navigate their environment, flying insects rely on visual cues, such as optic flow. Which cues insects can extract from their environment depends closely on the spatial and temporal response properties of their visual system. These in turn can vary between individuals that differ in body size. How optic flow-based flight control depends on the spatial structure of visual cues, and how this relationship scales with body size, has previously been investigated in insects with apposition compound eyes. Here, we characterised the visual flight control response limits and their relationship to body size in an insect with superposition compound eyes: the hummingbird hawkmoth Macroglossum stellatarum. We used the hawkmoths’ centring response in a flight tunnel as a readout for their reception of translational optic flow stimuli of different spatial frequencies. We show that their responses cut off at different spatial frequencies when translational optic flow was presented on either one, or both tunnel walls. Combined with differences in flight speed, this suggests that their flight control was primarily limited by their temporal rather than spatial resolution. We also observed strong individual differences in flight performance, but no correlation between the spatial response cutoffs and body or eye size.


2014 ◽  
Vol 10 (5) ◽  
pp. 20140279 ◽  
Author(s):  
Christine Scholtyssek ◽  
Marie Dacke ◽  
Ronald Kröger ◽  
Emily Baird

To detect and avoid collisions, animals need to perceive and control the distance and the speed with which they are moving relative to obstacles. This is especially challenging for swimming and flying animals that must control movement in a dynamic fluid without reference from physical contact to the ground. Flying animals primarily rely on optic flow to control flight speed and distance to obstacles. Here, we investigate whether swimming animals use similar strategies for self-motion control to flying animals by directly comparing the trajectories of zebrafish ( Danio rerio ) and bumblebees ( Bombus terrestris ) moving through the same experimental tunnel. While moving through the tunnel, black and white patterns produced (i) strong horizontal optic flow cues on both walls, (ii) weak horizontal optic flow cues on both walls and (iii) strong optic flow cues on one wall and weak optic flow cues on the other. We find that the mean speed of zebrafish does not depend on the amount of optic flow perceived from the walls. We further show that zebrafish, unlike bumblebees, move closer to the wall that provides the strongest visual feedback. This unexpected preference for strong optic flow cues may reflect an adaptation for self-motion control in water or in environments where visibility is limited.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Julien Lecoeur ◽  
Marie Dacke ◽  
Dario Floreano ◽  
Emily Baird

Behaviour ◽  
1979 ◽  
Vol 70 (1-2) ◽  
pp. 1-116 ◽  
Author(s):  
I. Bossema

AbstractThe European jay (Garrulus g. glandarius) strongly depends on acorns for food. Many acorns are hoarded enabling the jay to feed upon them at times of the year in which they would otherwise be unavailable. Many of the hoarded acorns germinate and become seedlings so that jays play an important role in the dispersal of acorns and the reproduction of oaks (in this study: Quercus robur, the pedunculate oak). These mutual relationships were analysed both with wild jays in the field (province of Drente, The Netherlands) and with tame birds in confinement. Variation in the composition of the food throughout the year is described quantitatively. Acorns were the stock diet of adults in most months of the year. Leaf-eating caterpillars predominantly occurring on oak were the main food items of nestlings. Acorns formed the bulk of the food of fledglings in June. A high rate of acorn consumption in winter, spring and early summer becomes possible because individual jays hoard several thousands of acorns, mainly in October. In experiments, acorns of pedunculate oak were not preferred over equal sized acorns of sessile oak (which was not found in the study area). Acorns of pedunculate oak were strongly preferred over those of American oak and nuts of hazel and beech. Among acorns of pedunculate oak, ripe, sound, long-slim and big ones were preferred. Jays collect one or more (up to six) acorns per hoarding trip. In the latter case, the first ones are swallowed and the last one is usually carried in the bill. For swallowing the dimensions of the beak imposed a limit on size preference; for bill transport usually the biggest acorn was selected. The greater the number of acorns per trip, the longer was the transportation distance during hoarding. From trip to trip jays dispersed their acorns widely and when several acorns were transported during one trip, these were generally buried at different sites. Burial took place by pushing acorns in the soil and by subsequent hammering and covering. Jays often selected rather open sites, transitions in the vegetation and vertical structures such as saplings and tree trunks, for burial of acorns. In captivity jays also hoarded surplus food. Here, spacing out of burials was also observed; previously used sites usually being avoided. In addition, hiding along substrate edges and near conspicuous objects was observed. Jays tended to hide near sticks presented in a horizontal position rather than near identical ones in vertical position, especially when the colour of the sticks contrasted with the colour of the substrate. Also, rough surfaced substrate was strongly preferred over similar but smooth surfaced substrate. Successful retrieval of and feeding on hoarded acorns were observed in winter even when snow-cover had considerably altered the scenery. No evidence was obtained that acorns could be traced back by smell. Many indications were obtained that visual information from near and far beacons, memorized during hiding, was used in finding acorns. The use of beacons by captive jays was also studied. Experiments led to the conclusion that vertical beacons are more important to retrieving birds than identical horizontal ones. The discrepancy with the jay's preference for horizontal structures during hiding is discussed. Most seedlings emerge in May and June. The distribution pattern of seedlings and bill prints on the shells of their acorns indicated that many seedlings emerged from acorns hidden by jays in the previous autumn. The cotyledons of these plants remain underground and are in excellent condition in spring and early summer. Jays exploited acorns by pulling at the stem of seedlings and then removing the cotyledons. This did not usually damage the plants severely. Jays can find acorns in this situation partly because they remember where they buried acorns. In addition, it was shown that jays select seedlings of oak rather than ones of other species, and that they preferentially inspected those seedlings that were most profitable in terms of cotyledon yield and quality. Experiments uncovered some of the visual cues used in this discrimination. The effects of hoarding on the preservation of acorns were examined in the field and the laboratory. Being buried reduced the chance that acorns were robbed by conspecifics and other acorn feeders. Scatter hoarding did not lead to better protection of buried acorns than larder hoarding, but the spread of risk was better in the former than the latter. It was concluded that the way in which jays hoard acorns increases the chance that they can exploit them later. In addition, the condition of acorns is better preserved by being buried. An analysis was made of the consequences of the jay's behaviour for oaks. The oak does incur certain costs: some of its acorns are eaten by jays during the dispersal and storage phase, and some seedlings are damaged as a consequence of cotyledon removal. However, these costs are outweighed by the benefits the oak receives. Many of its most viable acorns are widely dispersed and buried at sites where the prospects for further development into mature oak are highly favourable. The adaptiveness of the characters involved in preferential feeding on and hoarding of acorns by jays is discussed in relation to several environmental pressures: competition with allied species; food fluctuations in the jay's niche; and food competitors better equipped to break up hard "dry" fruits. Reversely, jays exert several selective pressures which are likely to have evolutionary consequences for oaks, such as the selection of long-slim and large acorns with tight shells. In addition, oak seedlings with a long tap root and tough stem are selected for. Although other factors than mutual selective pressures between the two may have affected the present day fit between jays and oaks it is concluded that several characters of jays and oaks can be considered as co-adapted features of a symbiotic relationship.


2022 ◽  
pp. 1-20
Author(s):  
Amin Basiri ◽  
Valerio Mariani ◽  
Giuseppe Silano ◽  
Muhammad Aatif ◽  
Luigi Iannelli ◽  
...  

Abstract Multi-rotor Unmanned Aerial Vehicles (UAVs), although originally designed and developed for defence and military purposes, in the last ten years have gained momentum, especially for civilian applications, such as search and rescue, surveying and mapping, and agricultural crops and monitoring. Thanks to their hovering and Vertical Take-Off and Landing (VTOL) capabilities and the capacity to carry out tasks with complete autonomy, they are now a standard platform for both research and industrial uses. However, while the flight control architecture is well established in the literature, there are still many challenges in designing autonomous guidance and navigation systems to make the UAV able to work in constrained and cluttered environments or also indoors. Therefore, the main motivation of this work is to provide a comprehensive and exhaustive literature review on the numerous methods and approaches to address path-planning problems for multi-rotor UAVs. In particular, the inclusion of a review of the related research in the context of Precision Agriculture (PA) provides a unified and accessible presentation for researchers who are initiating their endeavours in this subject.


2018 ◽  
Vol 40 (1) ◽  
pp. 93-109
Author(s):  
YI ZHENG ◽  
ARTHUR G. SAMUEL

AbstractIt has been documented that lipreading facilitates the understanding of difficult speech, such as noisy speech and time-compressed speech. However, relatively little work has addressed the role of visual information in perceiving accented speech, another type of difficult speech. In this study, we specifically focus on accented word recognition. One hundred forty-two native English speakers made lexical decision judgments on English words or nonwords produced by speakers with Mandarin Chinese accents. The stimuli were presented as either as videos that were of a relatively far speaker or as videos in which we zoomed in on the speaker’s head. Consistent with studies of degraded speech, listeners were more accurate at recognizing accented words when they saw lip movements from the closer apparent distance. The effect of apparent distance tended to be larger under nonoptimal conditions: when stimuli were nonwords than words, and when stimuli were produced by a speaker who had a relatively strong accent. However, we did not find any influence of listeners’ prior experience with Chinese accented speech, suggesting that cross-talker generalization is limited. The current study provides practical suggestions for effective communication between native and nonnative speakers: visual information is useful, and it is more useful in some circumstances than others.


2020 ◽  
Author(s):  
P. Kalyanasundaram ◽  
M. A. Willis

AbstractFlying insects track turbulent odor plumes to find mates, food and egg-laying sites. To maintain contact with the plume, insects are thought to adapt their flight control according to the distribution of odor in the plume using the timing of odor onsets and intervals between odor encounters. Although timing cues are important, few studies have addressed whether insects are capable of deriving spatial information about odor distribution from bilateral comparisons between their antennae in flight. The proboscis extension reflex (PER) associative learning protocol, originally developed to study odor learning in honeybees, was modified to show hawkmoths, Manduca sexta, can discriminate between odor stimuli arriving on either antenna. We show moths discriminated the odor arrival side with an accuracy of >70%. The information about spatial distribution of odor stimuli is thus available to moths searching for odor sources, opening the possibility that they use both spatial and temporal odor information.


2017 ◽  
Vol 61 (7) ◽  
pp. 672-687 ◽  
Author(s):  
Ayellet Pelled ◽  
Tanya Zilberstein ◽  
Alona Tsirulnikov ◽  
Eran Pick ◽  
Yael Patkin ◽  
...  

The existing literature presents ambivalent evidence regarding the significance of visual cues, as opposed to textual cues, in the process of impression formation. While visual information may have a strong effect due to its vividness and immediate absorption, textual information might be more powerful due to its solid, unambiguous nature. This debate is particularly relevant in the context of online social networks, whose users share textual and visual elements. To explore our main research question, “Which elements of one’s Facebook profile have a more significant influence on impression formation of extroversion—pictures or texts?” we conducted two complementary online experiments, manipulating visual and textual cues inside and outside the context of Facebook. We then attempted to identify the relevant underlying mechanisms in impression formation. Our findings indicate that textual cues play a more dominant role online, whether via Facebook or not, supporting assertions of a new-media literacy that is text based. Additionally, we found the participants’ level of need for cognition influenced the effect such that individuals with a high need for cognition placed more emphasis on textual cues. The number of “likes” was also a significant predictor of perceptions of the individuals’ social orientation, especially when the other cues were ambiguous.


2018 ◽  
Vol 5 (2) ◽  
pp. 171785 ◽  
Author(s):  
Martin F. Strube-Bloss ◽  
Wolfgang Rössler

Flowers attract pollinating insects like honeybees by sophisticated compositions of olfactory and visual cues. Using honeybees as a model to study olfactory–visual integration at the neuronal level, we focused on mushroom body (MB) output neurons (MBON). From a neuronal circuit perspective, MBONs represent a prominent level of sensory-modality convergence in the insect brain. We established an experimental design allowing electrophysiological characterization of olfactory, visual, as well as olfactory–visual induced activation of individual MBONs. Despite the obvious convergence of olfactory and visual pathways in the MB, we found numerous unimodal MBONs. However, a substantial proportion of MBONs (32%) responded to both modalities and thus integrated olfactory–visual information across MB input layers. In these neurons, representation of the olfactory–visual compound was significantly increased compared with that of single components, suggesting an additive, but nonlinear integration. Population analyses of olfactory–visual MBONs revealed three categories: (i) olfactory, (ii) visual and (iii) olfactory–visual compound stimuli. Interestingly, no significant differentiation was apparent regarding different stimulus qualities within these categories. We conclude that encoding of stimulus quality within a modality is largely completed at the level of MB input, and information at the MB output is integrated across modalities to efficiently categorize sensory information for downstream behavioural decision processing.


Sign in / Sign up

Export Citation Format

Share Document