scholarly journals Does urbanization favour exotic bee species? Implications for the conservation of native bees in cities

2019 ◽  
Vol 15 (12) ◽  
pp. 20190574 ◽  
Author(s):  
Gordon Fitch ◽  
Caleb J. Wilson ◽  
Paul Glaum ◽  
Chatura Vaidya ◽  
Maria-Carolina Simao ◽  
...  

A growing body of research indicates that cities can support diverse bee communities. However, urbanization may disproportionately benefit exotic bees, potentially to the detriment of native species. We examined the influence of urbanization on exotic and native bees using two datasets from Michigan, USA. We found that urbanization positively influenced exotic—but not native—bee abundance and richness, and that this association could not be explained by proximity to international ports of entry, prevalence of exotic flora or urban warming. We found a negative relationship between native and exotic bee abundance at sites with high total bee abundance, suggesting that exotic bees may negatively affect native bee populations. These effects were not driven by the numerically dominant exotic honeybee, but rather by other exotic bees. Our findings complicate the emerging paradigm of cities as key sites for pollinator conservation.

2019 ◽  
Vol 63 (2) ◽  
pp. 327-332
Author(s):  
Silvina Quintana ◽  
Gregorio Fernandez de Landa ◽  
Pablo Revainera ◽  
Facundo Meroi ◽  
Leonardo Porrini ◽  
...  

AbstractApis mellifera filamentous virus (AmFV) is a large double stranded DNA virus of honey bees and its prevalence and relationship with other parasites is poorly known. Samples consisted of fifty-one adult bees belonging to eight native species collected using entomological nets in six provinces of Argentina, from 2009 to 2018. Total genomic DNA was extracted from individual bees and a 551 bp fragment of the Bro-N gene of AmFV was amplified by qPCR. In the present work we have reported for the first time both the presence and the wide geographic distribution of AmFV in Argentinian species of native bees. This is the first report of the presence of this virus associated with Xylocopa atamisquensis, X. augusti, X. frontalis, X. spendidula, Bombus pauloensis and Peponapis fervens. Detecting pathogens that could threaten native bee health is of outmost importance to generate both conservation and management strategies.


2020 ◽  
Vol 49 (3) ◽  
pp. 717-725
Author(s):  
D S Stein ◽  
D M Debinski ◽  
J M Pleasants ◽  
A L Toth

Abstract Native pollinators are important for providing vital services in agroecosystems; however, their numbers are declining globally. Bees are the most efficient and diverse members of the pollinator community; therefore, it is imperative that management strategies be implemented that positively affect bee community composition and health. Here, we test responses of the bee and flowering plant communities to land management treatments in the context of grasslands in the upper Midwestern United States, a critical area with respect to bee declines. Twelve sites were selected to examine floral resources and wild bee communities based on three different types of grasslands: tallgrass prairie remnants, ungrazed restorations, and grazed restorations. Total bee abundance was significantly higher in ungrazed restorations than remnants, but there were no significant differences among grasslands in community composition or Shannon diversity. Across the three grassland types we also examined mass and lipid stores as nutritional health indicators in three sweat bees (Halictidae), Augochlora pura, Agapostemon virescens, and Halictus ligatus. Although there were no differences in lipid content, total average bee mass was significantly higher in Ag. virescens collected from ungrazed restorations as compared to remnants. Floral abundance of native and non-native species combined was significantly higher in grazed restorations compared to remnants and ungrazed restorations. However, ungrazed restorations had higher abundance and richness of native flowering ramets. These data suggest that bee abundance and nutrition are driven by high abundance of native flowering plant species, rather than total flowering plants.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 702
Author(s):  
Laurel Treviño Murphy ◽  
Shelly Engelman ◽  
John L. Neff ◽  
Shalene Jha

Declines in native bee communities due to forces of global change have become an increasing public concern. Despite this heightened interest, there are few publicly available courses on native bees, and little understanding of how participants might benefit from such courses. In October of 2018 and 2019, we taught the ‘Native Bees of Texas’ course to the public at The University of Texas at Austin Lady Bird Johnson Wildflower Center botanical gardens in an active learning environment with slide-based presentations, printed photo-illustrated resources, and direct insect observations. In this study, we evaluated course efficacy and learning outcomes with a pre/post-course test, a survey, and open-ended feedback, focused on quality improvement findings. Overall, participants’ test scores increased significantly, from 60% to 87% correct answers in 2018 and from 64% to 87% in 2019, with greater post-course differences in ecological knowledge than in identification skills. Post-course, the mean of participants’ bee knowledge self-ratings was 4.56 on a five-point scale. The mean of participants’ ratings of the degree to which they attained the course learning objectives was 4.43 on a five-point scale. Assessment results provided evidence that the course enriched participants’ knowledge of native bee ecology and conservation and gave participants a basic foundation in bee identification. This highlights the utility of systematic course evaluations in public engagement efforts related to biodiversity conservation.


2018 ◽  
Author(s):  
Joan M. Meiners ◽  
Terry L. Griswold ◽  
Olivia Messinger Carril

AbstractThousands of species of bees are in global decline, yet research addressing the ecology and status of these wild pollinators lags far behind work being done to address similar impacts on the managed honey bee. This knowledge gap is especially glaring in natural areas, despite knowledge that protected habitats harbor and export diverse bee communities into nearby croplands where their pollination services have been valued at over $3 billion per year. Surrounded by ranches and farmlands, Pinnacles National Park in the Inner South Coast Range of California contains intact Mediterranean chaparral shrubland. This habitat type is among the most valuable for bee biodiversity worldwide, as well as one of the most vulnerable to agricultural conversion, urbanization and climate change. Pinnacles National Park is also one of a very few locations where extensive native bee inventory efforts have been repeated over time. This park thus presents a valuable and rare opportunity to monitor long-term trends and baseline variability of native bees in natural habitats. Fifteen years after a species inventory marked Pinnacles as a biodiversity hotspot for native bees, we resurveyed these native bee communities over two flowering seasons using a systematic, plot-based design. Combining results, we report a total of 450 bee species within this 109km2natural area of California, including 48 new species records as of 2012 and 95 species not seen since 1999. As far as we are aware, this species richness marks Pinnacles National Park as one of the most densely diverse places known for native bees. We explore patterns of bee diversity across this protected landscape, compare results to other surveyed natural areas, and highlight the need for additional repeated inventories in protected areas over time amid widespread concerns of bee declines.


2017 ◽  
pp. 1-20 ◽  
Author(s):  
Paul R Rhoades ◽  
Terry Griswold ◽  
Harold Ikerd ◽  
Lisette Waits ◽  
Nilsa Bosque-Pérez ◽  
...  

While synoptic collections provide data on the range and general composition of the North American bee fauna, bee communities associated with specific habitats are largely uncharacterized.  This report describes the community of native bees currently found in remnant fragments of the Palouse Prairie of northern Idaho and southeastern Washington State.  Native bees were collected using standardized collection techniques including blue vane traps, colored pan traps and aerial netting.  More than 13,000 individuals were collected, representing at least 174 species and 36 morphospecies in 29 genera.  These data provide the most thorough characterization of the bee fauna of this vulnerable ecosystem, as well as community level information on bee species of unknown conservation status.  These results are relevant to regional conservation efforts and, more broadly, are representative of conditions in fragmented grasslands surrounded by intense agriculture, a common global land use pattern of conservation concern.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 698 ◽  
Author(s):  
Katherine A. Parys ◽  
Isaac L. Esquivel ◽  
Karen W. Wright ◽  
Terry Griswold ◽  
Michael J. Brewer

Native bees (Hymenoptera: Anthophila) were sampled using bee bowls in two states to determine biodiversity in commercial cotton fields of the southern United States. In both states, native bee communities found in cotton fields were dominated by generalist pollinators in the genera Agapostemon, Augochloropsis, Halictus, and Lasioglossum (Hymenoptera: Halictidae), and Melissodes (Hymenoptera: Apidae). Melissodes tepaneca (Cresson) was the most abundant species found in cotton fields in both states. Some species collected are known specialists on other plant taxa, suggesting they may be tourist species. Here we provide a baseline species list of native bees found in cotton. Ordination indicated separation between the communities found in the two states when pooled by genus, but these differences were not significant. While cotton is grown in highly managed and disturbed landscapes, our data suggest that a community of common generalist native pollinators persists. Many of these species are also found in other cropping systems across North America.


2020 ◽  
Author(s):  
Isaac. L. Esquivel ◽  
Katherine A. Parys ◽  
Karen W. Wright ◽  
Micky D. Eubanks ◽  
John D. Oswald ◽  
...  

AbstractThe cotton agroecosystem is one of the most intensely managed, economically, and culturally important fiber crops worldwide including in the United States of America (U.S.), China, India, Pakistan, and Brazil. The composition and configuration of crop species and semi-natural habitat can have significant effects on ecosystem services such as pollination. Here we investigate the effect of crop and semi-natural habitat configuration in a large-scale cotton agroecosystem on the diversity and abundance of native bees. Interfaces sampled include cotton grown next to cotton, sorghum or semi-natural habitat. Collections of native bees across interface types revealed 32 species in 13 genera across 3 families. Average species richness ranged between 20.5 and 30.5 with the highest (30.5) at the interface of cotton and semi-natural habitat. The most abundant species was Melissodes tepaneca Cresson (> 4,000 individuals, ~75% of bees collected) with a higher number of individuals found in all cotton-crop interfaces compared to the cotton interface with semi-natural habitat or natural habitat alone. It was also found that interface type had a significant effect on the native bee communities. Communities of native bees in the cotton-crop interfaces tended to be more consistent in the abundance of species and number of species at each sampling site. While cotton grown next to semi-natural habitat had higher species richness, the number of bees collected varied. These data suggest that native bee communities persist in large-scale cotton agroecosystems and some species may thrive even when cotton-crop interfaces are dominant compared with semi-natural habitat. These data have native bee conservation implications that may improve potential pollination benefits to cotton production.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 545
Author(s):  
Sara Straffon Díaz ◽  
Luca Carisio ◽  
Aulo Manino ◽  
Paolo Biella ◽  
Marco Porporato

Megachile sculpturalis (Smith, 1853) is the first exotic bee species in Europe. Its remarkably fast expansion across this continent is leading to a growing concern on the extent of negative impacts to the native fauna. To evaluate the interactions of exotic bees with local wild bees, we set up trap nests for above-ground nesting bees on a semi-urban area of north-western Italy. We aimed to investigate the interaction in artificial traps between the exotic and native wild bees and to assess offspring traits accounting for exotic bee fitness: progeny sex ratio and incidence of natural enemies. We found that the tunnels occupied by exotic bees were already cohabited by O. cornuta, and thus the cells of later nesting alien bees may block the native bee emergence for the next year. The progeny sex ratio of M. sculpturalis was strongly unbalanced toward males, indicating a temporary adverse population trend in the local invaded area. In addition, we documented the presence of three native natural enemies affecting the brood of the exotic bee. Our results bring out new insights on how the M. sculpturalis indirectly competes with native species and on its performance in new locations.


Sign in / Sign up

Export Citation Format

Share Document