scholarly journals Localized auxin peaks in concentration-based transport models of the shoot apical meristem

2015 ◽  
Vol 12 (106) ◽  
pp. 20141407 ◽  
Author(s):  
Delphine Draelants ◽  
Daniele Avitabile ◽  
Wim Vanroose

We study the formation of auxin peaks in a generic class of concentration-based auxin transport models, posed on static plant tissues. Using standard asymptotic analysis, we prove that, on bounded domains, auxin peaks are not formed via a Turing instability in the active transport parameter, but via simple corrections to the homogeneous steady state. When the active transport is small, the geometry of the tissue encodes the peaks’ amplitude and location: peaks arise where cells have fewer neighbours, that is, at the boundary of the domain. We test our theory and perform numerical bifurcation analysis on two models that are known to generate auxin patterns for biologically plausible parameter values. In the same parameter regimes, we find that realistic tissues are capable of generating a multitude of stationary patterns, with a variable number of auxin peaks, that can be selected by different initial conditions or by quasi-static changes in the active transport parameter. The competition between active transport and production rate determines whether peaks remain localized or cover the entire domain. In particular, changes in the auxin production that are fast with respect to the cellular life cycle affect the auxin peak distribution, switching from localized spots to fully patterned states. We relate the occurrence of localized patterns to a snaking bifurcation structure, which is known to arise in a wide variety of nonlinear media, but has not yet been reported in plant models.

2021 ◽  
Vol 1 ◽  
Author(s):  
Jared Barber ◽  
Amy Carpenter ◽  
Allison Torsey ◽  
Tyler Borgard ◽  
Rami A. Namas ◽  
...  

Sepsis is characterized by an overactive, dysregulated inflammatory response that drives organ dysfunction and often results in death. Mathematical modeling has emerged as an essential tool for understanding the underlying complex biological processes. A system of four ordinary differential equations (ODEs) was developed to simulate the dynamics of bacteria, the pro- and anti-inflammatory responses, and tissue damage (whose molecular correlate is damage-associated molecular pattern [DAMP] molecules and which integrates inputs from the other variables, feeds back to drive further inflammation, and serves as a proxy for whole-organism health status). The ODE model was calibrated to experimental data from E. coli infection in genetically identical rats and was validated with mortality data for these animals. The model demonstrated recovery, aseptic death, or septic death outcomes for a simulated infection while varying the initial inoculum, pathogen growth rate, strength of the local immune response, and activation of the pro-inflammatory response in the system. In general, more septic outcomes were encountered when the initial inoculum of bacteria was increased, the pathogen growth rate was increased, or the host immune response was decreased. The model demonstrated that small changes in parameter values, such as those governing the pathogen or the immune response, could explain the experimentally observed variability in mortality rates among septic rats. A local sensitivity analysis was conducted to understand the magnitude of such parameter effects on system dynamics. Despite successful predictions of mortality, simulated trajectories of bacteria, inflammatory responses, and damage were closely clustered during the initial stages of infection, suggesting that uncertainty in initial conditions could lead to difficulty in predicting outcomes of sepsis by using inflammation biomarker levels.


1956 ◽  
Vol 186 (3) ◽  
pp. 453-459 ◽  
Author(s):  
Seymour H. Wollman

The dependence of the ratio of the radioiodide concentrations in thyroid gland and serum ( T/S) on the serum iodide concentration for fixed serum thiocyanate concentrations was investigated in C3H mice. The empirical equation (See PDF for Equation) where [SCN–] and [I–] are the serum thiocyanate and iodide concentrations in mg %, fitted the data within the limits of experimental error. Interpretation of the empirical equation was based on simple adsorption and active transport models of the iodide concentrating mechanism. The inhibition by thiocyanate of the thyroidal iodide concentrating mechanism appears to be competitive.


Author(s):  
Qingyuan Yang ◽  
E. Bruce Pitman ◽  
Elaine Spiller ◽  
Marcus Bursik ◽  
Andrea Bevilacqua

Statistical emulators are a key tool for rapidly producing probabilistic hazard analysis of geophysical processes. Given output data computed for a relatively small number of parameter inputs, an emulator interpolates the data, providing the expected value of the output at untried inputs and an estimate of error at that point. In this work, we propose to fit Gaussian Process emulators to the output from a volcanic ash transport model, Ash3d. Our goal is to predict the simulated volcanic ash thickness from Ash3d at a location of interest using the emulator. Our approach is motivated by two challenges to fitting emulators—characterizing the input wind field and interactions between that wind field and variable grain sizes. We resolve these challenges by using physical knowledge on tephra dispersal. We propose new physically motivated variables as inputs and use normalized output as the response for fitting the emulator. Subsetting based on the initial conditions is also critical in our emulator construction. Simulation studies characterize the accuracy and efficiency of our emulator construction and also reveal its current limitations. Our work represents the first emulator construction for volcanic ash transport models with considerations of the simulated physical process.


In nonlinear non-stationary systems, dynamic bifurcations result in a transition to a qualitatively new state. In this paper we examine how the dynamics of transition of such systems may be assessed using the concept of transient basins of attraction. We delineate the phenomenon of indeterminate dynamic bifurcations, where it is shown that the response, after the system passes through critical parameter values, may be extremely sensitive to the choice of initial conditions or parameter states. This new form of unpredictability in systems whose parameters vary with time, is clearly an important concept to be assimilated in the theory of non-stationary dynamics.


1995 ◽  
Vol 05 (01) ◽  
pp. 271-273
Author(s):  
M. KOCH ◽  
R. TETZLAFF ◽  
D. WOLF

We studied the power spectrum of the normalized voltage across the capacitor parallel to a piecewise-linear resistor of Chua’s circuit in the “chaos-chaos intermittency” state [Anishchenko et al., 1992]. The investigations included various initial conditions and circuit parameter values without and with external excitation. In all cases we found spectra showing a 1/ω2-decay over more than four decades.


2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Huayong Zhang ◽  
Xuebing Cong ◽  
Tousheng Huang ◽  
Shengnan Ma ◽  
Ge Pan

A spatiotemporal discrete predator-prey system with Allee effect is investigated to learn its Neimark-Sacker-Turing instability and pattern formation. Based on the occurrence of stable homogeneous stationary states, conditions for Neimark-Sacker bifurcation and Turing instability are determined. Numerical simulations reveal that Neimark-Sacker bifurcation triggers a route to chaos, with the emergence of invariant closed curves, periodic orbits, and chaotic attractors. The occurrence of Turing instability on these three typical dynamical behaviors leads to the formation of heterogeneous patterns. Under the effects of Neimark-Sacker-Turing instability, pattern evolution process is sensitive to tiny changes of initial conditions, suggesting the occurrence of spatiotemporal chaos. With application of deterministic initial conditions, transient symmetrical patterns are observed, demonstrating that ordered structures can exist in chaotic processes. Moreover, when local kinetics of the system goes further on the route to chaos, the speed of symmetry breaking becomes faster, leading to more fragmented and more disordered patterns at the same evolution time. The rich spatiotemporal complexity provides new comprehension on predator-prey coexistence in the ways of spatiotemporal chaos.


1997 ◽  
Vol 343 ◽  
pp. 153-168 ◽  
Author(s):  
S. R. CLARKE ◽  
E. R. JOHNSON

This paper analyses the finite-amplitude flow of a constant-vorticity current past coastal topography in the long-wave limit. A forced finite-amplitude long-wave equation is derived to describe the evolution of the vorticity interface. An analysis of this equation shows that three distinct near-critical regimes occur. In the first the upstream flow is restricted, with overturning of the vorticity interface for sufficiently large topography. In the second quasi-steady nonlinear waves form downstream of the topography with weak upstream influence. In the third regime the upstream rotational fluid is partially blocked. Blocking and overturning are enhanced at headlands with steep rear faces and decreased at headlands with steep forward faces. For certain parameter values both overturning and partially blocked solutions are possible and the long-time evolution is critically dependent on the initial conditions. The reduction of the problem to a one-dimensional nonlinear wave equation allows solutions to be followed to much longer times and parameter space to be explored more finely than in the related pioneering contour-dynamical integrations of Stern (1991).


2009 ◽  
Vol 80 (12) ◽  
Author(s):  
Sébastien Clesse ◽  
Christophe Ringeval ◽  
Jonathan Rocher

1996 ◽  
Vol 309 ◽  
pp. 85-91 ◽  
Author(s):  
William J. Merryfield ◽  
Greg Holloway

Numerical simulations are employed in a detailed test of the statistical mechanical description of topographic turbulence. Predictions of steady flows correlated with topography are given particular attention. Agreement between numerical and statistical mechanical results is demonstrated for a large range of parameter values, and over an ensemble of random choices of topography and initial conditions.


Sign in / Sign up

Export Citation Format

Share Document