scholarly journals Phase transformation-driven artificial muscle mimics the multifunctionality of avian wing muscle

2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Pedro B. C. Leal ◽  
Marcela Cabral-Seanez ◽  
Vikram B. Baliga ◽  
Douglas L. Altshuler ◽  
Darren J. Hartl

Skeletal muscle provides a compact solution for performing multiple tasks under diverse operational conditions, a capability lacking in many current engineered systems. Here, we evaluate if shape memory alloy (SMA) components can serve as artificial muscles with tunable mechanical performance. We experimentally impose cyclic stimuli, electric and mechanical, to an SMA wire and demonstrate that this material can mimic the response of the avian humerotriceps, a skeletal muscle that acts in the dynamic control of wing shapes. We next numerically evaluate the feasibility of using SMA springs as artificial leg muscles for a bipedal walking robot. Altering the phase offset between mechanical and electrical stimuli was sufficient for both synthetic and natural muscle to shift between actuation, braking and spring-like behaviour.

2009 ◽  
Vol 15 ◽  
pp. 49-54
Author(s):  
S. Díaz-Zagal ◽  
C. Gutiérrez-Estrada ◽  
E. Rendón-Lara ◽  
I. Abundez-Barrera ◽  
J.H. Pacheco-Sánchez

Actually, the pneumatic artificial muscles of McKibben type [1] show a great functional similarity with the skeletal muscle. A detailed analysis of the system has been performed to better characterize this similarity with the analogous dynamic behavior of the organic system. Such analysis has shown that the McKibben-type artificial muscle can be adapted to the Hill fundamental model [2]. Research regarding pneumatic artificial muscle with application to robotics has recently focused on mini-actuators for miniaturized robotics systems. This is specially true in the area of medical robotics, but an extension of miniactuator technology to other applications may be feasible, such as the development of artificial fine-motion limbs (hands and/or fingers). The present work details the artificial muscle miniaturization process developed in the LESIA laboratory, their behavior, their position and force control characteristics, as well as the possible applications of this technology to medical robotics.


2012 ◽  
Vol 84 ◽  
pp. 39-44 ◽  
Author(s):  
Bertrand Tondu

Several types of artificial muscles are actually able to mimic the active spring-like behaviour characterizing the tension-length diagram of the skeletal muscle but the natural damping expressed by the typical tension-velocity Hill’s relationship is not so easy to integrate in a simple way into the artificial muscle functioning. We discussed the use of a textile braided sheath, particularly in the case of the so-called McKibben structure to obtain a Hill’s model-like dynamic behaviour of the artificial muscle. Experiments are reported to compare “quick-release” experiments – as defined in muscular physiology – between artificial muscles whose braided weave is made of metallic strands and of rayon textile strands. It is shown that only in the second case a typical hyperbolic tension-velocity is highlighted with a curvature close to this of human skeletal muscle. It is also shown how the typical laws of friction in textile can explain this analogical behaviour with the Hill’s-model interpreted as a force model including a typical non-linear viscous component. An original interpretation of Hill’s model in terms of natural load-variations adaptation is given and so the advantage for an artificial muscle to get this biomimetic character.


Author(s):  
Iain A. Anderson ◽  
Benjamin M. O’Brien

Mechanical devices that include home appliances, automobiles, and airplanes are typically driven by electric motors or combustion engines through gearboxes and other linkages. Airplane wings, for example, have hinged control surfaces such as ailerons. Now imagine a wing that has no hinged control surfaces or linkages but that instead bends or warps to assume an appropriate shape, like the wing of a bird. Such a device could be enabled using an electro-active polymer technology based on electronic artificial muscles. Artificial muscles act directly on a structure, like our leg muscles that are attached by tendon to our bones and that through phased contraction enable us to walk. Sensory feedback from our muscles enables proprioceptive control. So, for artificial muscles to be used appropriately we need to pay attention not only to mechanisms for muscle actuation but also to how we can incorporate self-sensing feedback for the control of position.


Soft Matter ◽  
2021 ◽  
Author(s):  
Vincent Mansard

The physics of soft matter can contribute to the revolution in robotics and medical prostheses.These two fields requires the development of artificial muscles with behavior close to the biologicalmuscle. Today,...


2011 ◽  
Vol 5 (4) ◽  
pp. 544-550 ◽  
Author(s):  
Hiroki Tomori ◽  
◽  
Taro Nakamura

Robots have entered human life, and closer relationships are being formed between humans and robots. It is desirable that these robots be flexible and lightweight. With this as our goal, we have developed an artificial muscle actuator using straight-fiber-type artificial muscles derived from the McKibben-type muscles, which have excellent contraction rate and force characteristics. In this study, we compared the steady state and dynamic characteristic of straightfiber-type and McKibben-type muscles and verified the usefulness of straight-fiber-type muscles.


2020 ◽  
Vol 7 (12) ◽  
pp. 3305-3315
Author(s):  
Run Wang ◽  
Yanan Shen ◽  
Dong Qian ◽  
Jinkun Sun ◽  
Xiang Zhou ◽  
...  

Artificial muscles are developed by using twisted natural rubber fiber coated with buckled carbon nanotube sheet, which show tensile and torsional actuations and sensing function via the resistance change by a single electric signal.


Sign in / Sign up

Export Citation Format

Share Document