scholarly journals Three-dimensional surface morphometry differentiates behaviour on primate percussive stone tools

2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Tomos Proffitt ◽  
Jonathan S. Reeves ◽  
Alfonso Benito-Calvo ◽  
Laura Sánchez-Romero ◽  
Adrián Arroyo ◽  
...  

The Early Stone Age record preserves a rich behavioural signature of hominin stone tool making and use. The role of percussive technology in the daily subsistence strategies of our earliest ancestors has seen renewed focus recently. Studies of modern primate tool use highlight the diverse range of behaviours potentially associated with percussive technology. This has prompted significant methodological developments to characterize the associated damage marks (use-wear) on hammerstones and anvils. Little focus has, however, been paid to identifying whether these techniques can successfully differentiate between the damage patterns produced by specific and differing percussive behaviours. Here, we present a novel workflow drawing on the strengths of visual identification and three-dimensional (3D) surface quantification of use-wear. We apply this methodology firstly to characterize macaque percussive use-wear and test the efficacy of 3D surface quantification techniques in differentiating between percussive damage and natural surface topography. Secondly, we use this method to differentiate between use-wear associated with various wild macaque percussive behaviours. By combining analyst-directed, 3D surface analysis and use-wear dimensional analysis, we show that macaque percussive behaviours create specific diagnostic signatures and highlight a means of quantifiably recording such behavioural signatures in both primate and hominin contexts.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Andrea Zupancich ◽  
Stella Nunziante-Cesaro ◽  
Ruth Blasco ◽  
Jordi Rosell ◽  
Emanuela Cristiani ◽  
...  

Abstract For a long while, the controversy surrounding several bone tools coming from pre-Upper Palaeolithic contexts favoured the view of Homo sapiens as the only species of the genus Homo capable of modifying animal bones into specialised tools. However, evidence such as South African Early Stone Age modified bones, European Lower Palaeolithic flaked bone tools, along with Middle and Late Pleistocene bone retouchers, led to a re-evaluation of the conception of Homo sapiens as the exclusive manufacturer of specialised bone tools. The evidence presented herein include use wear and bone residues identified on two flint scrapers as well as a sawing mark on a fallow deer tibia, not associated with butchering activities. Dated to more than 300 kya, the evidence here presented is among the earliest related to tool-assisted bone working intended for non-dietary purposes, and contributes to the debate over the recognition of bone working as a much older behaviour than previously thought. The results of this study come from the application of a combined methodological approach, comprising use wear analysis, residue analysis, and taphonomy. This approach allowed for the retrieval of both direct and indirect evidence of tool-assisted bone working, at the Lower Palaeolithic site of Qesem Cave (Israel).


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 382 ◽  
Author(s):  
Umesh Kalathiya ◽  
Monikaben Padariya ◽  
Jakub Faktor ◽  
Etienne Coyaud ◽  
Javier A. Alfaro ◽  
...  

The fundamentals of how protein–protein/RNA/DNA interactions influence the structures and functions of the workhorses from the cells have been well documented in the 20th century. A diverse set of methods exist to determine such interactions between different components, particularly, the mass spectrometry (MS) methods, with its advanced instrumentation, has become a significant approach to analyze a diverse range of biomolecules, as well as bring insights to their biomolecular processes. This review highlights the principal role of chemistry in MS-based structural proteomics approaches, with a particular focus on the chemical cross-linking of protein–protein/DNA/RNA complexes. In addition, we discuss different methods to prepare the cross-linked samples for MS analysis and tools to identify cross-linked peptides. Cross-linking mass spectrometry (CLMS) holds promise to identify interaction sites in larger and more complex biological systems. The typical CLMS workflow allows for the measurement of the proximity in three-dimensional space of amino acids, identifying proteins in direct contact with DNA or RNA, and it provides information on the folds of proteins as well as their topology in the complexes. Principal CLMS applications, its notable successes, as well as common pipelines that bridge proteomics, molecular biology, structural systems biology, and interactomics are outlined.


1996 ◽  
Vol 34 (1) ◽  
pp. 27
Author(s):  
Sue Yon Shim ◽  
Ki Joon Sung ◽  
Young Ju Kim ◽  
In Soo Hong ◽  
Myung Soon Kim ◽  
...  

2016 ◽  
Vol 2 (2) ◽  
pp. 40
Author(s):  
Miriam Aparicio

This study tests some hypotheses included in the psycho-social-communicational paradigm, which emphasizes the cognitive effects of the media and the role of the psychosocial subject as the recipient


2019 ◽  
Author(s):  
Christopher Michael Kavanagh ◽  
Susilo Wibisono ◽  
Rohan Kapitány ◽  
Whinda Yustisia ◽  
Idhamsyah Eka Putra ◽  
...  

Indonesia is the most populous Islamic country and as such is host to a diverse range of Islamic beliefs and practices. Here we examine how the diversity of beliefs and practices among Indonesian Muslims relates to group bonding and parochialism. In particular, we examine the predictive power of two distinct types of group alignment, group identification and identity fusion, among individuals from three Sunni politico-religious groups - a fundamentalist group (PKS), a moderate group (NU), and a control sample of politically unaffiliated citizens. Fundamentalists were more fused to targets than moderates or citizens, but contrary to fusion theory, we found across all groups, that group identification (not fusion) better predicted parochialism, including willingness to carry out extreme pro-group actions. We discuss how religious beliefs and practice impact parochial attitudes, as well as the implications for theoretical models linking fusion to extreme behaviour.


2020 ◽  
Vol 27 ◽  
Author(s):  
Ji-Yeon Lee ◽  
Myoung Hee Kim

: HOX genes belong to the highly conserved homeobox superfamily, responsible for the regulation of various cellular processes that control cell homeostasis, from embryogenesis to carcinogenesis. The abnormal expression of HOX genes is observed in various cancers, including breast cancer; they act as oncogenes or as suppressors of cancer, according to context. In this review, we analyze HOX gene expression patterns in breast cancer and examine their relationship, based on the three-dimensional genome structure of the HOX locus. The presence of non-coding RNAs, embedded within the HOX cluster, and the role of these molecules in breast cancer have been reviewed. We further evaluate the characteristic activity of HOX protein in breast cancer and its therapeutic potential.


2020 ◽  
Vol 13 (12) ◽  
pp. e239286
Author(s):  
Kumar Nilesh ◽  
Prashant Punde ◽  
Nitin Shivajirao Patil ◽  
Amol Gautam

Ossifying fibroma (OF) is a rare, benign, fibro-osseous lesion of the jawbone characterised by replacement of the normal bone with fibrous tissue. The fibrous tissue shows varying amount of calcified structures resembling bone and/or cementum. The central variant of OF is rare, and shows predilection for mandible among the jawbone. Although it is classified as fibro-osseous lesion, it clinically behaves as a benign tumour and can grow to large size, causing bony swelling and facial asymmetry. This paper reports a case of large central OF of mandible in a 40-year-old male patient. The lesion was treated by segmental resection of mandible. Reconstruction of the surgical defect was done using avascular fibula bone graft. Role of three-dimensional printing of jaw and its benefits in surgical planning and reconstruction are also highlighted.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2001
Author(s):  
Greta Baratti ◽  
Angelo Rizzo ◽  
Maria Elena Miletto Petrazzini ◽  
Valeria Anna Sovrano

Zebrafish spontaneously use distance and directional relationships among three-dimensional extended surfaces to reorient within a rectangular arena. However, they fail to take advantage of either an array of freestanding corners or an array of unequal-length surfaces to search for a no-longer-present goal under a spontaneous cued memory procedure, being unable to use the information supplied by corners and length without some kind of rewarded training. The present study aimed to tease apart the geometric components characterizing a rectangular enclosure under a procedure recruiting the reference memory, thus training zebrafish in fragmented layouts that provided differences in surface distance, corners, and length. Results showed that fish, besides the distance, easily learned to use both corners and length if subjected to a rewarded exit task over time, suggesting that they can represent all the geometrically informative parts of a rectangular arena when consistently exposed to them. Altogether, these findings highlight crucially important issues apropos the employment of different behavioral protocols (spontaneous choice versus training over time) to assess spatial abilities of zebrafish, further paving the way to deepen the role of visual and nonvisual encodings of isolated geometric components in relation to macrostructural boundaries.


Sign in / Sign up

Export Citation Format

Share Document