scholarly journals Correction to ‘Gull-inspired joint-driven wing morphing allows adaptive longitudinal flight control’

2021 ◽  
Vol 18 (182) ◽  
pp. 20210635
Author(s):  
C. Harvey ◽  
V. B. Baliga ◽  
C. D. Goates ◽  
D. F. Hunsaker ◽  
D. J. Inman
Keyword(s):  
2021 ◽  
pp. 1-17
Author(s):  
B. Nugroho ◽  
J. Brett ◽  
B.T. Bleckly ◽  
R.C. Chin

ABSTRACT Unmanned Combat Aerial Vehicles (UCAVs) are believed by many to be the future of aerial strike/reconnaissance capability. This belief led to the design of the UCAV 1303 by Boeing Phantom Works and the US Airforce Lab in the late 1990s. Because UCAV 1303 is expected to take on a wide range of mission roles that are risky for human pilots, it needs to be highly adaptable. Geometric morphing can provide such adaptability and allow the UCAV 1303 to optimise its physical feature mid-flight to increase the lift-to-drag ratio, manoeuvrability, cruise distance, flight control, etc. This capability is extremely beneficial since it will enable the UCAV to reconcile conflicting mission requirements (e.g. loiter and dash within the same mission). In this study, we conduct several modifications to the wing geometry of UCAV 1303 via Computational Fluid Dynamics (CFD) to analyse its aerodynamic characteristics produced by a range of different wing geometric morphs. Here we look into two specific geometric morphing wings: linear twists on one of the wings and linear twists at both wings (wash-in and washout). A baseline CFD of the UCAV 1303 without any wing morphing is validated against published wind tunnel data, before proceeding to simulate morphing wing configurations. The results show that geometric morphing wing influences the UCAV-1303 aerodynamic characteristics significantly, improving the coefficient of lift and drag, pitching moment and rolling moment.


2012 ◽  
Vol 197 ◽  
pp. 159-163 ◽  
Author(s):  
Lai Bin Xu ◽  
Shu Xing Yang ◽  
Bo Mo

The dynamic response of Variable Sweep Wing Aircraft (VSWA) with the wing sweeping is presented. The center of gravity (cg) of the aircraft, location of each wing partition , and moment of inertia alter significantly due to the wing morphing, resulting in considerably change of the dynamics of the aircraft. The extended equations of motion (EOMs) suitable for morphing wing aircraft are derived. Compared with the traditional EOMs, there are 4 additional forces and moments exhibiting in the extended EOMs due to the wing morphing. The results show that the additional forces and moments can affect the flight control considerably.


Author(s):  
Anthony D. McDonald ◽  
Scott J. I. Walker

The concept of inflatable wings has design heritage and they have recently seen renewed interest, largely due to the increased demand in unmanned aerial vehicles (UAVs). They offer design advantages over conventional wings, particularly with regard to stowage and portability, since they can be tightly packed when undeployed. Unfortunately current methods of flight control involve the use of additional control surfaces attached to the trailing edge of the wing, adversely affecting the stowage capabilities. One way of overcoming this restriction is to use the wing itself as a control surface, by morphing the very shape of the wing to achieve the desired results. This article outlines the research performed at the University of Southampton into differing configurations of Shape Memory Alloy (SMA) wires as a controllable actuator for the wing morphing. Specifically the use of multiple wires to further enhance this control was the focus of this work. A simple test rig was constructed in order to evaluate the pulling force achievable by combinations of SMA wires in a number of configurations. The most promising of these configurations was then attached to an inflatable wing model for further testing. Both static testing and wind tunnel testing was undertaken, evaluating the authority of flight control such a system could achieve. The test results are presented in this paper, giving an initial performance assessment of the proposed control method.


Author(s):  
Binbin Yan ◽  
Yong Li ◽  
Pei Dai ◽  
Muzeng Xing

The morphing aircraft can change different wing shapes or geometries to achieve the optimal flight performance according to various mission scenarios. In this paper, DATCOM is used to calculate aerodynamic parameters based on Firebee UAV morphing aircraft with different wing configurations and analyze aerodynamic characteristics. A novel adaptive wing morphing strategy for morphing aircraft based on reinforcement learning method is proposed. This method can highly meet the demand of keeping optimal performance in multiple flight conditions, and the adaptive wing morphing strategy, three-loop normal load altitude controller and sliding mode velocity controller can together make sure stability of morphing aircraft during morphing process with good tracking performance.


2021 ◽  
Vol 18 (179) ◽  
pp. 20210132
Author(s):  
C. Harvey ◽  
V. B. Baliga ◽  
C. D. Goates ◽  
D. F. Hunsaker ◽  
D. J. Inman

Birds dynamically adapt to disparate flight behaviours and unpredictable environments by actively manipulating their skeletal joints to change their wing shape. This in-flight adaptability has inspired many unmanned aerial vehicle (UAV) wings, which predominately morph within a single geometric plane. By contrast, avian joint-driven wing morphing produces a diverse set of non-planar wing shapes. Here, we investigated if joint-driven wing morphing is desirable for UAVs by quantifying the longitudinal aerodynamic characteristics of gull-inspired wing-body configurations. We used a numerical lifting-line algorithm (MachUpX) to determine the aerodynamic loads across the range of motion of the elbow and wrist, which was validated with wind tunnel tests using three-dimensional printed wing-body models. We found that joint-driven wing morphing effectively controls lift, pitching moment and static margin, but other mechanisms are required to trim. Within the range of wing extension capability, specific paths of joint motion (trajectories) permit distinct longitudinal flight control strategies. We identified two unique trajectories that decoupled stability from lift and pitching moment generation. Further, extension along the trajectory inherent to the musculoskeletal linkage system produced the largest changes to the investigated aerodynamic properties. Collectively, our results show that gull-inspired joint-driven wing morphing allows adaptive longitudinal flight control and could promote multifunctional UAV designs.


AIAA Journal ◽  
2021 ◽  
pp. 1-9
Author(s):  
Omar Selim ◽  
Erwin R. Gowree ◽  
Christian Lagemann ◽  
Edward Talboys ◽  
Chetan Jagadeesh ◽  
...  
Keyword(s):  

2017 ◽  
Vol 7 (1) ◽  
pp. 28-41 ◽  
Author(s):  
Robert J. de Boer ◽  
Karel Hurts

Abstract. Automation surprise (AS) has often been associated with aviation safety incidents. Although numerous laboratory studies have been conducted, few data are available from routine flight operations. A survey among a representative sample of 200 Dutch airline pilots was used to determine the prevalence of AS and the severity of its consequences, and to test some of the factors leading to AS. Results show that AS is a relatively widespread phenomenon that occurs three times per year per pilot on average but rarely has serious consequences. In less than 10% of the AS cases that were reviewed, an undesired aircraft state was induced. Reportable occurrences are estimated to occur only once every 1–3 years per pilot. Factors leading to a higher prevalence of AS include less flying experience, increasing complexity of the flight control mode, and flight duty periods of over 8 hr. It is concluded that AS is a manifestation of system and interface complexity rather than cognitive errors.


Sign in / Sign up

Export Citation Format

Share Document