scholarly journals Cross-regulation between Aurora B and Citron kinase controls midbody architecture in cytokinesis

Open Biology ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 160019 ◽  
Author(s):  
Callum McKenzie ◽  
Zuni I. Bassi ◽  
Janusz Debski ◽  
Marco Gottardo ◽  
Giuliano Callaini ◽  
...  

Cytokinesis culminates in the final separation, or abscission, of the two daughter cells at the end of cell division. Abscission relies on an organelle, the midbody, which forms at the intercellular bridge and is composed of various proteins arranged in a precise stereotypic pattern. The molecular mechanisms controlling midbody organization and function, however, are obscure. Here we show that proper midbody architecture requires cross-regulation between two cell division kinases, Citron kinase (CIT-K) and Aurora B, the kinase component of the chromosomal passenger complex (CPC). CIT-K interacts directly with three CPC components and is required for proper midbody architecture and the orderly arrangement of midbody proteins, including the CPC. In addition, we show that CIT-K promotes Aurora B activity through phosphorylation of the INCENP CPC subunit at the TSS motif. In turn, Aurora B controls CIT-K localization and association with its central spindle partners through phosphorylation of CIT-K's coiled coil domain. Our results identify, for the first time, a cross-regulatory mechanism between two kinases during cytokinesis, which is crucial for establishing the stereotyped organization of midbody proteins.

2006 ◽  
Vol 173 (6) ◽  
pp. 833-837 ◽  
Author(s):  
Gerben Vader ◽  
René H. Medema ◽  
Susanne M.A. Lens

During mitosis, the chromosomal passenger complex (CPC) orchestrates highly different processes, such as chromosome alignment, histone modification, and cytokinesis. Proper and timely localization of this complex is the key to precise control over the enzymatic core of the CPC, the Aurora-B kinase. We discuss the molecular mechanisms by which the CPC members direct the dynamic localization of the complex throughout cell division. Also, we summarize posttranslational modifications that occur on the CPC and discuss their roles in regulating localization and function of this mitotic complex.


Medicina ◽  
2018 ◽  
Vol 54 (4) ◽  
pp. 53 ◽  
Author(s):  
Ieva Antanavičiūtė ◽  
Paulius Gibieža ◽  
Rytis Prekeris ◽  
Vytenis Skeberdis

Faithful cell division is crucial for successful proliferation, differentiation, and development of cells, tissue homeostasis, and preservation of genomic integrity. Cytokinesis is a terminal stage of cell division, leaving two genetically identical daughter cells connected by an intercellular bridge (ICB) containing the midbody (MB), a large protein-rich organelle, in the middle. Cell division may result in asymmetric or symmetric abscission of the ICB. In the first case, the ICB is severed on the one side of the MB, and the MB is inherited by the opposite daughter cell. In the second case, the MB is cut from both sides, expelled into the extracellular space, and later it can be engulfed by surrounding cells. Cells with lower autophagic activity, such as stem cells and cancer stem cells, are inclined to accumulate MBs. Inherited MBs affect cell polarity, modulate intra- and intercellular communication, enhance pluripotency of stem cells, and increase tumorigenic potential of cancer cells. In this review, we briefly summarize the latest knowledge on MB formation, inheritance, degradation, and function, and in addition, present and discuss our recent findings on the electrical and chemical communication of cells connected through the MB-containing ICB.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3350
Author(s):  
Eleni Petsalaki ◽  
George Zachos

The abscission checkpoint contributes to the fidelity of chromosome segregation by delaying completion of cytokinesis (abscission) when there is chromatin lagging in the intercellular bridge between dividing cells. Although additional triggers of an abscission checkpoint-delay have been described, including nuclear pore defects, replication stress or high intercellular bridge tension, this review will focus only on chromatin bridges. In the presence of such abnormal chromosomal tethers in mammalian cells, the abscission checkpoint requires proper localization and optimal kinase activity of the Chromosomal Passenger Complex (CPC)-catalytic subunit Aurora B at the midbody and culminates in the inhibition of Endosomal Sorting Complex Required for Transport-III (ESCRT-III) components at the abscission site to delay the final cut. Furthermore, cells with an active checkpoint stabilize the narrow cytoplasmic canal that connects the two daughter cells until the chromatin bridges are resolved. Unsuccessful resolution of chromatin bridges in checkpoint-deficient cells or in cells with unstable intercellular canals can lead to chromatin bridge breakage or tetraploidization by regression of the cleavage furrow. In turn, these outcomes can lead to accumulation of DNA damage, chromothripsis, generation of hypermutation clusters and chromosomal instability, which are associated with cancer formation or progression. Recently, many important questions regarding the mechanisms of the abscission checkpoint have been investigated, such as how the presence of chromatin bridges is signaled to the CPC, how Aurora B localization and kinase activity is regulated in late midbodies, the signaling pathways by which Aurora B implements the abscission delay, and how the actin cytoskeleton is remodeled to stabilize intercellular canals with DNA bridges. Here, we review recent progress toward understanding the mechanisms of the abscission checkpoint and its role in guarding genome integrity at the chromosome level, and consider its potential implications for cancer therapy.


2019 ◽  
Vol 218 (12) ◽  
pp. 3912-3925 ◽  
Author(s):  
Maria A. Abad ◽  
Jan G. Ruppert ◽  
Lana Buzuk ◽  
Martin Wear ◽  
Juan Zou ◽  
...  

Chromosome association of the chromosomal passenger complex (CPC; consisting of Borealin, Survivin, INCENP, and the Aurora B kinase) is essential to achieve error-free chromosome segregation during cell division. Hence, understanding the mechanisms driving the chromosome association of the CPC is of paramount importance. Here using a multifaceted approach, we show that the CPC binds nucleosomes through a multivalent interaction predominantly involving Borealin. Strikingly, Survivin, previously suggested to target the CPC to centromeres, failed to bind nucleosomes on its own and requires Borealin and INCENP for its binding. Disrupting Borealin–nucleosome interactions excluded the CPC from chromosomes and caused chromosome congression defects. We also show that Borealin-mediated chromosome association of the CPC is critical for Haspin- and Bub1-mediated centromere enrichment of the CPC and works upstream of the latter. Our work thus establishes Borealin as a master regulator determining the chromosome association and function of the CPC.


Open Biology ◽  
2012 ◽  
Vol 2 (5) ◽  
pp. 120070 ◽  
Author(s):  
Luisa Capalbo ◽  
Emilie Montembault ◽  
Tetsuya Takeda ◽  
Zuni I. Bassi ◽  
David M. Glover ◽  
...  

Summary Cytokinesis controls the proper segregation of nuclear and cytoplasmic materials at the end of cell division. The chromosomal passenger complex (CPC) has been proposed to monitor the final separation of the two daughter cells at the end of cytokinesis in order to prevent cell abscission in the presence of DNA at the cleavage site, but the precise molecular basis for this is unclear. Recent studies indicate that abscission could be mediated by the assembly of filaments comprising components of the endosomal sorting complex required for transport-III (ESCRT-III). Here, we show that the CPC subunit Borealin interacts directly with the Snf7 components of ESCRT-III in both Drosophila and human cells. Moreover, we find that the CPC's catalytic subunit, Aurora B kinase, phosphorylates one of the three human Snf7 paralogues—CHMP4C—in its C-terminal tail, a region known to regulate its ability to form polymers and associate with membranes. Phosphorylation at these sites appears essential for CHMP4C function because their mutation leads to cytokinesis defects. We propose that CPC controls abscission timing through inhibition of ESCRT-III Snf7 polymerization and membrane association using two concurrent mechanisms: interaction of its Borealin component with Snf7 proteins and phosphorylation of CHMP4C by Aurora B.


Open Biology ◽  
2016 ◽  
Vol 6 (10) ◽  
pp. 160248 ◽  
Author(s):  
Luisa Capalbo ◽  
Ioanna Mela ◽  
Maria Alba Abad ◽  
A. Arockia Jeyaprakash ◽  
J. Michael Edwardson ◽  
...  

The chromosomal passenger complex (CPC)—composed of Aurora B kinase, Borealin, Survivin and INCENP—surveys the fidelity of genome segregation throughout cell division. The CPC has been proposed to prevent polyploidy by controlling the final separation (known as abscission) of the two daughter cells via regulation of the ESCRT-III CHMP4C component. The molecular details are, however, still unclear. Using atomic force microscopy, we show that CHMP4C binds to and remodels membranes in vitro . Borealin prevents the association of CHMP4C with membranes, whereas Aurora B interferes with CHMP4C's membrane remodelling activity. Moreover, we show that CHMP4C phosphorylation is not required for its assembly into spiral filaments at the abscission site and that two distinctly localized pools of phosphorylated CHMP4C exist during cytokinesis. We also characterized the CHMP4C interactome in telophase cells and show that the centralspindlin complex associates preferentially with unphosphorylated CHMP4C in cytokinesis. Our findings indicate that gradual dephosphorylation of CHMP4C triggers a ‘relay’ mechanism between the CPC and centralspindlin that regulates the timely distribution and activation of CHMP4C for the execution of abscission.


Open Biology ◽  
2012 ◽  
Vol 2 (7) ◽  
pp. 120095 ◽  
Author(s):  
Mar Carmena

At the end of cell division, the cytoplasmic bridge joining the daughter cells is severed through a process that involves scission of the plasma membrane. The presence of chromatin bridges ‘stuck’ in the division plane is sensed by the chromosomal passenger complex (CPC) component Aurora B kinase, triggering a checkpoint that delays abscission until the chromatin bridges have been resolved. Recent work has started to shed some light on the molecular mechanism by which the CPC controls the timing of abscission.


2019 ◽  
Author(s):  
M. A. Abad ◽  
J. G. Ruppert ◽  
L. Buzuk ◽  
M. Wear ◽  
J. Zou ◽  
...  

SummaryChromosome association of the Chromosomal Passenger Complex (CPC; consisting of Borealin, Survivin, INCENP and the Aurora B kinase) is essential to achieve error-free chromosome segregation during cell division. Hence, understanding the mechanisms driving the chromosome association of the CPC is of paramount importance. Here using a multifaceted approach, we show that the CPC binds nucleosomes through a multivalent interaction predominantly involving Borealin. Strikingly, Survivin, previously suggested to target the CPC to centromeres [1–3] failed to bind nucleosomes on its own and requires Borealin and INCENP for its binding. Disrupting Borealin-nucleosome interactions excluded the CPC from chromosomes and caused chromosome congression defects. We also show that Borealin-mediated chromosome association of the CPC is critical for Haspin- and Bub1-mediated centromere enrichment of the CPC and works upstream of the latter. Our work thus establishes Borealin as a master regulator determining the chromosome association and function of the CPC.


2005 ◽  
Vol 171 (2) ◽  
pp. 267-279 ◽  
Author(s):  
Anjon Audhya ◽  
Francie Hyndman ◽  
Ian X. McLeod ◽  
Amy S. Maddox ◽  
John R. Yates ◽  
...  

Cytokinesis completes cell division and partitions the contents of one cell to the two daughter cells. Here we characterize CAR-1, a predicted RNA binding protein that is implicated in cytokinesis. CAR-1 localizes to germline-specific RNA-containing particles and copurifies with the essential RNA helicase, CGH-1, in an RNA-dependent fashion. The atypical Sm domain of CAR-1, which directly binds RNA, is dispensable for CAR-1 localization, but is critical for its function. Inhibition of CAR-1 by RNA-mediated depletion or mutation results in a specific defect in embryonic cytokinesis. This cytokinesis failure likely results from an anaphase spindle defect in which interzonal microtubule bundles that recruit Aurora B kinase and the kinesin, ZEN-4, fail to form between the separating chromosomes. Depletion of CGH-1 results in sterility, but partially depleted worms produce embryos that exhibit the CAR-1–depletion phenotype. Cumulatively, our results suggest that CAR-1 functions with CGH-1 to regulate a specific set of maternally loaded RNAs that is required for anaphase spindle structure and cytokinesis.


Author(s):  
Caroline S. Simon ◽  
Vanessa S. Stürmer ◽  
Julien Guizetti

Regulating the number of progeny generated by replicative cell cycles is critical for any organism to best adapt to its environment. Classically, the decision whether to divide further is made after cell division is completed by cytokinesis and can be triggered by intrinsic or extrinsic factors. Contrarily, cell cycles of some species, such as the malaria-causing parasites, go through multinucleated cell stages. Hence, their number of progeny is determined prior to the completion of cell division. This should fundamentally affect how the process is regulated and raises questions about advantages and challenges of multinucleation in eukaryotes. Throughout their life cycle Plasmodium spp. parasites undergo four phases of extensive proliferation, which differ over three orders of magnitude in the amount of daughter cells that are produced by a single progenitor. Even during the asexual blood stage proliferation parasites can produce very variable numbers of progeny within one replicative cycle. Here, we review the few factors that have been shown to affect those numbers. We further provide a comparative quantification of merozoite numbers in several P. knowlesi and P. falciparum parasite strains, and we discuss the general processes that may regulate progeny number in the context of host-parasite interactions. Finally, we provide a perspective of the critical knowledge gaps hindering our understanding of the molecular mechanisms underlying this exciting and atypical mode of parasite multiplication.


Sign in / Sign up

Export Citation Format

Share Document