scholarly journals Identification of four unconventional kinetoplastid kinetochore proteins KKT22–25 in Trypanosoma brucei

Open Biology ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 190236 ◽  
Author(s):  
Olga O. Nerusheva ◽  
Patryk Ludzia ◽  
Bungo Akiyoshi

The kinetochore is a multi-protein complex that drives chromosome segregation in eukaryotes. It assembles onto centromere DNA and interacts with spindle microtubules during mitosis and meiosis. Although most eukaryotes have canonical kinetochore proteins, kinetochores of evolutionarily divergent kinetoplastid species consist of at least 20 unconventional kinetochore proteins (KKT1–20). In addition, 12 proteins (KKT-interacting proteins 1–12, KKIP1–12) are known to localize at kinetochore regions during mitosis. It remains unclear whether KKIP proteins interact with KKT proteins. Here, we report the identification of four additional kinetochore proteins, KKT22–25, in Trypanosoma brucei . KKT22 and KKT23 constitutively localize at kinetochores, while KKT24 and KKT25 localize from S phase to anaphase. KKT23 has a Gcn5-related N -acetyltransferase domain, which is not found in any kinetochore protein known to date. We also show that KKIP1 co-purifies with KKT proteins, but not with KKIP proteins. Finally, our affinity purification of KKIP2/3/4/6 identifies a number of proteins as their potential interaction partners, many of which are implicated in RNA binding or processing. These findings further support the idea that kinetoplastid kinetochores are unconventional.

2019 ◽  
Author(s):  
Olga O. Nerusheva ◽  
Patryk Ludzia ◽  
Bungo Akiyoshi

SummaryThe kinetochore is a multi-protein complex that drives chromosome segregation in eukaryotes. It assembles onto centromere DNA and interacts with spindle microtubules during mitosis and meiosis. Although most eukaryotes have canonical kinetochore proteins, kinetochores of evolutionarily divergent kinetoplastid species consist of at least 20 unconventional kinetochore proteins (KKT1–20). In addition, twelve proteins (KKIP1–12) are known to localize at kinetochore regions during mitosis. It remains unclear whether KKIP proteins interact with KKT proteins. Here, we report the identification of four additional kinetochore proteins, KKT22–25, in Trypanosoma brucei. KKT22 and KKT23 constitutively localize at kinetochores, while KKT24 and KKT25 localize from S phase to anaphase. KKT23 has a Gcn5-related N-acetyltransferase (GNAT) domain, which is not found in any kinetochore protein known to date. We also show that KKIP1 co-purifies with KKT proteins, but not with KKIP proteins. Finally, our affinity purification of KKIP2/3/4/6 identifies a number of proteins as their potential interaction partners, many of which are implicated in RNA binding or processing. These findings further support the idea that kinetoplastid kinetochores are unconventional.


2020 ◽  
Vol 295 (42) ◽  
pp. 14291-14304
Author(s):  
Kathrin Bajak ◽  
Kevin Leiss ◽  
Christine Clayton ◽  
Esteban Erben

In Trypanosoma brucei and related kinetoplastids, gene expression regulation occurs mostly posttranscriptionally. Consequently, RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Yet, the roles of many RNA-binding proteins are not understood. Our previous research identified the RNA-binding protein ZC3H5 as possibly involved in gene repression, but its role in controlling gene expression was unknown. We here show that ZC3H5 is an essential cytoplasmic RNA-binding protein. RNAi targeting ZC3H5 causes accumulation of precytokinetic cells followed by rapid cell death. Affinity purification and pairwise yeast two-hybrid analysis suggest that ZC3H5 forms a complex with three other proteins, encoded by genes Tb927.11.4900, Tb927.8.1500, and Tb927.7.3040. RNA immunoprecipitation revealed that ZC3H5 is preferentially associated with poorly translated, low-stability mRNAs, the 5′-untranslated regions and coding regions of which are enriched in the motif (U/A)UAG(U/A). As previously found in high-throughput analyses, artificial tethering of ZC3H5 to a reporter mRNA or other complex components repressed reporter expression. However, depletion of ZC3H5 in vivo caused only very minor decreases in a few targets, marked increases in the abundances of very stable mRNAs, an increase in monosomes at the expense of large polysomes, and appearance of “halfmer” disomes containing two 80S subunits and one 40S subunit. We speculate that the ZC3H5 complex might be implicated in quality control during the translation of suboptimal open reading frames.


Open Biology ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 150236 ◽  
Author(s):  
Yahui Liu ◽  
Arsen Petrovic ◽  
Pascaline Rombaut ◽  
Shyamal Mosalaganti ◽  
Jenny Keller ◽  
...  

Accurate chromosome segregation during mitosis and meiosis is crucial for cellular and organismal viability. Kinetochores connect chromosomes with spindle microtubules and are essential for chromosome segregation. These large protein scaffolds emerge from the centromere, a specialized region of the chromosome enriched with the histone H3 variant CENP-A. In most eukaryotes, the kinetochore core consists of the centromere-proximal constitutive centromere-associated network (CCAN), which binds CENP-A and contains 16 subunits, and of the centromere-distal Knl1 complex, Mis12 complex, Ndc80 complex (KMN) network, which binds microtubules and contains 10 subunits. In the fruitfly, Drosophila melanogaster, the kinetochore underwent remarkable simplifications. All CCAN subunits, with the exception of centromeric protein C (CENP-C), and two KMN subunits, Dsn1 and Zwint, cannot be identified in this organism. In addition, two paralogues of the KMN subunit Nnf1 (Nnf1a and Nnf1b) are present. Finally, the Spc105R subunit, homologous to human Knl1/CASC5, underwent considerable sequence changes in comparison with other organisms. We combined biochemical reconstitution with biophysical and structural methods to investigate how these changes reflect on the organization of the Drosophila KMN network. We demonstrate that the Nnf1a and Nnf1b paralogues are subunits of distinct complexes, both of which interact directly with Spc105R and with CENP-C, for the latter of which we identify a binding site on the Mis12 subunit. Our studies shed light on the structural and functional organization of a highly divergent kinetochore particle.


2012 ◽  
Vol 12 (2) ◽  
pp. 356-367 ◽  
Author(s):  
Brooke Morriswood ◽  
Katharina Havlicek ◽  
Lars Demmel ◽  
Sevil Yavuz ◽  
Marco Sealey-Cardona ◽  
...  

ABSTRACT The trypanosomes are a family of parasitic protists of which the African trypanosome, Trypanosoma brucei , is the best characterized. The complex and highly ordered cytoskeleton of T. brucei has been shown to play vital roles in its biology but remains difficult to study, in large part owing to the intractability of its constituent proteins. Existing methods of protein identification, such as bioinformatic analysis, generation of monoclonal antibody panels, proteomics, affinity purification, and yeast two-hybrid screens, all have drawbacks. Such deficiencies—troublesome proteins and technical limitations—are common not only to T. brucei but also to many other protists, many of which are even less well studied. Proximity-dependent biotin identification (BioID) is a recently developed technique that allows forward screens for interaction partners and near neighbors in a native environment with no requirement for solubility in nonionic detergent. As such, it is extremely well suited to the exploration of the cytoskeleton. In this project, BioID was adapted for use in T. brucei . The trypanosome bilobe, a discrete cytoskeletal structure with few known protein components, represented an excellent test subject. Use of the bilobe protein TbMORN1 as a probe resulted in the identification of seven new bilobe constituents and two new flagellum attachment zone proteins. This constitutes the first usage of BioID on a largely uncharacterized structure, and demonstrates its utility in identifying new components of such a structure. This remarkable success validates BioID as a new tool for the study of unicellular eukaryotes in particular and the eukaryotic cytoskeleton in general.


Author(s):  
Evgeny Bakin ◽  
Fatih Sezer ◽  
Aslıhan Özbilen ◽  
Irem Kilic ◽  
Buket Uner ◽  
...  

Apomictic plants (reproducing via asexual seeds), unlike sexual individuals, avoid meiosis and egg cell fertilization. Consequently, apomixis is very important for fixing maternal genotypes in the next plant generations. Despite the progress in the study of apomixis, molecular and genetic regulation of the latter remains poorly understood. So far APOLLO (Aspartate Glutamate Aspartate Aspartate histidine exonuclease) is one of the very few described genes associated with apomixis in Boechera species. The centromere-specific histone H3 variant encoded by CENH3 gene is essential for cell division. Mutations in CENH3 disrupt chromosome segregation during mitosis and meiosis since the attachment of spindle microtubules to a mutated form of the CENH3 histone fails. This paper presents in silico characteristic of APOLLO and CENH3 genes, which may affect apomixis. Also, we characterize the structure of CENH3, study expression levels of APOLLO and CENH3 in gynoecium/siliques of the natural diploid apomictic and sexual Boechera species at the stages of before and after fertilization. While CENH3 was a single copy gene in all Boechera species, the APOLLO gene have several polymorphic alleles associated with sexual and apomictic reproduction in the Boechera genera. Expression of the APOLLO apo-allele during meiosis was upregulated in gynoecium of apomict B. divaricarpa downregulating after meiosis until 4th day after pollination (DAP). On the 5th DAP, expression in apomictic siliques increased again. In sexual B. stricta gynoecium and siliques APOLLO apo-allele did not express. Expression of the APOLLO sex-allele during and after meiosis in gynoecium of sexual plants was several times higher than that in apomictic gynoecium. However, after pollination the sex-allele was downregulated in sexual siliques to the level of apomicts and increased sharply on the 5th DAP, while in apomictic siliques it almost did not express. At the meiotic stage, the expression level of CENH3 in the gynoecium of apomicts was two times lower than that of the sexual Boechera, decreasing in both species after meiosis and keep remaining very low in siliques of both species for several days after artificial pollination until the 4th DAP, when the expression level raised in sexual B. stricta siliques exceeding 5 times the level in apomictic B. divaricarpa siliques. We also discuss polymorphism and phylogeny of the APOLLO and CENH3 genes.


Author(s):  
Evgeny Bakin ◽  
Fatih Sezer ◽  
Irem Kilic ◽  
Aslıhan Özbilen ◽  
Mike Rayko ◽  
...  

Apomictic plants (reproducing via asexual seeds), unlike sexual individuals, avoid meiosis and egg cell fertilization. Consequently, apomixis is very important for fixing maternal genotypes in the next plant generations. Despite the progress in the study of apomixis, molecular and genetic regulation of the latter remains poorly understood. So far APOLLO (Aspartate Glutamate Aspartate Aspartate histidine exonuclease) is the only described gene associated with apomixis in Boechera species. The centromere-specific histone H3 variant encoded by CENH3 gene is essential for cell division. Mutations in CENH3 disrupt chromosome segregation during mitosis and meiosis since the attachment of spindle microtubules to a mutated form of the CENH3 histone fails. This paper presents in silico characteristic of APOLLO and CENH3 genes, which may affect apomixis. Also, in this research we characterize the structure of CENH3, study expression levels of CENH3 and APOLLO in gynoecium/siliques of the natural diploid apomictic and sexual Boechera species at the stages of before and after fertilization. At the premeiotic stage, the expression level of CENH3 in the gynoecium of apomicts was two times lower than that of the sexual Boechera, it decreased in both species by the time of meiosis and increased after fertilization. By 1 DAP CENH3 expression started dropping in sexual B. stricta siliques and kept increasing in apomictic B. divaricarpa ones. That might indicate to a role of CENH3 in apomictic development in Boechera species. The expression levels of APOLLO also sharply decreased by the time of meiosis in gynoecium of both species; however, by 3 DAP, the level of APOLLO expression in siliques of apomicts was almost 1.5 times higher than that of the sexuals. While CENH3 was a single copy gene in all Boechera species, the APOLLO gene have several polymorphic alleles associated with sexual and apomictic reproduction in the Boechera genera. We also discuss polymorphism and phylogeny of the APOLLO and CENH3 genes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiyuan Zhang ◽  
Xin Guan ◽  
Kunal Shah ◽  
Jiusheng Yan

AbstractNicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+-mobilizing second messenger which uniquely mobilizes Ca2+ from acidic endolysosomal organelles. However, the molecular identity of the NAADP receptor remains unknown. Given the necessity of the endolysosomal two-pore channel (TPC1 or TPC2) in NAADP signaling, we performed affinity purification and quantitative proteomic analysis of the interacting proteins of NAADP and TPCs. We identified a Sm-like protein Lsm12 complexed with NAADP, TPC1, and TPC2. Lsm12 directly binds to NAADP via its Lsm domain, colocalizes with TPC2, and mediates the apparent association of NAADP to isolated TPC2 or TPC2-containing membranes. Lsm12 is essential and immediately participates in NAADP-evoked TPC activation and Ca2+ mobilization from acidic stores. These findings reveal a putative RNA-binding protein to function as an NAADP receptor and a TPC regulatory protein and provides a molecular basis for understanding the mechanisms of NAADP signaling.


2020 ◽  
Author(s):  
Jiyuan Zhang ◽  
Xin Guan ◽  
Jiusheng Yan

SUMMARYNicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+-mobilizing second messenger which uniquely mobilizes Ca2+ from acidic endolysosomal organelles. However, the molecular identity of the NAADP receptor remains unknown. Given the necessity of the endolysosomal two-pore channel (TPC1 or TPC2) in NAADP signaling, we performed affinity purification and quantitative proteomic analysis of the interacting proteins of NAADP and TPCs. We identified an Sm-like protein Lsm12 complexed with NAADP, TPC1, and TPC2. Lsm12 directly binds to NAADP via its Lsm domain, whereas TPC-containing membranes and isolated TPCs lose their affinities to NAADP in the absence of Lsm12. Lsm12 is essential and directly involved in NAADP-evoked TPC2 activation and Ca2+ mobilization. These findings reveal a putative RNA-binding protein to function as an NAADP receptor and a TPC regulatory protein and provides a molecular basis for understanding the mechanisms of NAADP signaling.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1155
Author(s):  
Xiaoqin Zheng ◽  
Zeyu Sun ◽  
Liang Yu ◽  
Danrong Shi ◽  
Miaojin Zhu ◽  
...  

SARS-CoV-2 infection has caused a global pandemic that has severely damaged both public health and the economy. The nucleocapsid protein of SARS-CoV-2 is multifunctional and plays an important role in ribonucleocapsid formation and viral genome replication. In order to elucidate its functions, interaction partners of the SARS-CoV-2 N protein in human cells were identified via affinity purification and mass spectrometry. We identified 160 cellular proteins as interaction partners of the SARS-CoV-2 N protein in HEK293T and/or Calu-3 cells. Functional analysis revealed strong enrichment for ribosome biogenesis and RNA-associated processes, including ribonucleoprotein complex biogenesis, ribosomal large and small subunits biogenesis, RNA binding, catalysis, translation and transcription. Proteins related to virus defence responses, including MOV10, EIF2AK2, TRIM25, G3BP1, ZC3HAV1 and ZCCHC3 were also identified in the N protein interactome. This study comprehensively profiled the viral–host interactome of the SARS-CoV-2 N protein in human cells, and the findings provide the basis for further studies on the pathogenesis and antiviral strategies for this emerging infection.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Sameer Dixit ◽  
Michaela Müller-McNicoll ◽  
Vojtěch David ◽  
Kathi Zarnack ◽  
Jernej Ule ◽  
...  

ABSTRACT A dozen mRNAs are edited by multiple insertions and/or deletions of uridine residues in the mitochondrion of Trypanosoma brucei . Several protein complexes have been implicated in performing this type of RNA editing, including the mitochondrial RNA-binding complex 1 (MRB1). Two paralogous novel RNA-binding proteins, MRB8170 and MRB4160, are loosely associated with the core MRB1 complex. Their roles in RNA editing and effects on target mRNAs are so far not well understood. In this study, individual-nucleotide-resolution UV-cross-linking and affinity purification (iCLAP) revealed a preferential binding of both proteins to mitochondrial mRNAs, which was positively correlated with their extent of editing. Integrating additional in vivo and in vitro data, we propose that binding of MRB8170 and/or MRB4160 onto pre-mRNA marks it for the initiation of editing and that initial binding of both proteins may facilitate the recruitment of other components of the RNA editing/processing machinery to ensure efficient editing. Surprisingly, MRB8170 also binds never-edited mRNAs, suggesting that at least this paralog has an additional role outside RNA editing to shape the mitochondrial transcriptome. IMPORTANCE Trypanosoma brucei mitochondrial mRNAs undergo maturation by RNA editing, a unique process involving decrypting open reading frames by the precise deletion and/or insertion of uridine (U) residues at specific positions on an mRNA. This process is catalyzed by multiprotein complexes, such as the RNA editing core complex, which provides the enzymatic activities needed for U insertion/deletion at a single editing site. Less well understood is how RNA editing occurs throughout an mRNA bearing multiple sites. To address this question, we mapped at single-nucleotide resolution the RNA interactions of two unique RNA-binding proteins (RBPs). These RBPs are part of the mitochondrial RNA-binding complex 1, hypothesized to mediate multiple rounds of RNA editing. Both RBPs were shown to mark mRNAs for the process in correlation with the number of editing sites on the transcript. Surprisingly, one also binds mRNAs that bypass RNA editing, indicating that it may have an additional role outside RNA editing.


Sign in / Sign up

Export Citation Format

Share Document