scholarly journals Cell wall microstructure, pore size distribution and absolute density of hemp shiv

2018 ◽  
Vol 5 (4) ◽  
pp. 171945 ◽  
Author(s):  
Y. Jiang ◽  
M. Lawrence ◽  
M. P. Ansell ◽  
A. Hussain

This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3–10 nm) and macropores (0.1–1 µm and 20–80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm −3 ) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes’ methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation.

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5427
Author(s):  
Boning Zhang ◽  
Baochao Shan ◽  
Yulong Zhao ◽  
Liehui Zhang

An accurate understanding of formation and gas properties is crucial to the efficient development of shale gas resources. As one kind of unconventional energy, shale gas shows significant differences from conventional energy ones in terms of gas accumulation processes, pore structure characteristics, gas storage forms, physical parameters, and reservoir production modes. Traditional experimental techniques could not satisfy the need to capture the microscopic characteristics of pores and throats in shale plays. In this review, the uniqueness of shale gas reservoirs is elaborated from the perspective of: (1) geological and pore structural characteristics, (2) adsorption/desorption laws, and (3) differences in properties between the adsorbed gas and free gas. As to the first aspect, the mineral composition and organic geochemical characteristics of shale samples from the Longmaxi Formation, Sichuan Basin, China were measured and analyzed based on the experimental results. Principles of different methods to test pore size distribution in shale formations are introduced, after which the results of pore size distribution of samples from the Longmaxi shale are given. Based on the geological understanding of shale formations, three different types of shale gas and respective modeling methods are reviewed. Afterwards, the conventional adsorption models, Gibbs excess adsorption behaviors, and supercritical adsorption characteristics, as well as their applicability to engineering problems, are introduced. Finally, six methods of calculating virtual saturated vapor pressure, seven methods of giving adsorbed gas density, and 12 methods of calculating gas viscosity in different pressure and temperature conditions are collected and compared, with the recommended methods given after a comparison.


2014 ◽  
Vol 9 (1) ◽  
pp. 155892501400900 ◽  
Author(s):  
S. Sakthivel ◽  
Anban J.J. Ezhil ◽  
T. Ramachandran

This paper reports an investigative study on the fabrication and measurement of the air permeability, mechanical properties, pore size distribution, and filtration efficiency of different nonwoven fabrics produced from reclaimed fibers by analytically changing the machine variables to manipulate the physical parameters of the nonwoven fabrics. Reclaimed fiber of cotton (60%) and polyester (40%) blend was used, so that the prospect of value addition to an inexpensive source of raw material could be explored. The changes in air permeability were interpreted in terms of fabric density profile and pore size distribution. The filtration parameters of filtration efficiency, dust holding capacity, and pressure drop were also calculated. Additionally, the effects of calendering on pore size and filtration properties were evaluated to discover the opportunity of fine-tuning and the performance of the filters. The outcome in this study reflected an overall development in all filtration characteristics due to the calendering operation.


2017 ◽  
Vol 31 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Milena Kercheva ◽  
Zofia Sokołowska ◽  
Mieczysław Hajnos ◽  
Kamil Skic ◽  
Toma Shishkov

Abstract The heterogeneity of soil physical properties of Fluvisols, lack of large pristine areas, and different moisture regimes on non-flooded and flooded terraces impede the possibility to find a soil profile which can serve as a baseline for estimating the impact of natural or anthropogenic factors on soil evolution. The aim of this study is to compare the pore size distribution of pristine Fluvisols on flooded and non-flooded terraces using the method of the soil water retention curve, mercury intrusion porosimetry, nitrogen adsorption isotherms, and water vapour sorption. The pore size distribution of humic horizons of pristine Fluvisols on the non-flooded terrace differs from pore size distribution of Fluvisols on the flooded terrace. The peaks of textural and structural pores are higher in the humic horizons under more humid conditions. The structural characteristics of subsoil horizons depend on soil texture and evolution stage. The peaks of textural pores at about 1 mm diminish with lowering of the soil organic content. Structureless horizons are characterized by uni-modal pore size distribution. Although the content of structural pores of the subsoil horizons of Fluvisols on the non-flooded terrace is low, these pores are represented by biopores, as the coefficient of filtration is moderately high. The difference between non-flooded and flooded profiles is well expressed by the available water storage, volume and mean radius of pores, obtained by mercury intrusion porosimetry and water desorption, which are higher in the surface horizons of frequently flooded Fluvisols.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Huimin Cao ◽  
Jianxiong Lyu ◽  
Yongdong Zhou ◽  
Xin Gao

With the increasing shortage of timber resources and the advancement of environmental protection projects, many artificial fast-growing forests are planted and used as raw materials in China. There are significant differences in the properties of natural forest wood and artificial fast-growing forest wood, and the properties of wood mainly depend on the change in the status of bound water in the cell wall. In this study, the fiber saturation point (FSP) and pore size distributions within the cell wall of six species of fast-growing forest wood were studied by low-temperature nuclear magnetic resonance (NMR) technology. The effects of species, growth rings, and extractives on the FSP and pore structure were analyzed. The water vapor sorption experiments were performed, and the adsorption isotherms of the samples were fitted through the Guggenheim-Anderson-de Boer (GAB) equation. According to the least-square regression of the adsorption isotherms and combined with the low-temperature NMR experiments, the content and proportion of the different types of bound water were analyzed. The results showed that the average FSP of each Chinese fir was about 40% and that of each poplar was about 35%. There is about a 10% difference between the FSP measured by NMR technology and the adsorption bound water content obtained by adsorption isothermal. The pore size distribution results show that in all samples, the proportion of pores larger than 10.5 nm is very low, about 10%; the proportion of 1.92-10.5 nm pores is about 30%; and the proportion of pores smaller than 1.92nm is more than 50%. This work will be helpful to the study of the wood moisture status and provide reference data for wood modification.


Holzforschung ◽  
2009 ◽  
Vol 63 (1) ◽  
Author(s):  
Andrés Dieste ◽  
Andreas Krause ◽  
Carsten Mai ◽  
Gilles Sèbe ◽  
Stéphane Grelier ◽  
...  

Abstract The enthalpy of melting and the freezing point depression of European beech (Fagus sylvatica L.) wood modified with 0.8, 1.3, and 2.3 M 1,3-dimethylol-4,5-dihydroxy ethylene urea (DMDHEU) were determined at different levels of moisture content above the fibre saturation point by differential scanning calorimetry. The results permitted estimations of the amount of water bound to the cell wall, non-freezing water (NFW), and pore size distribution. The NFW of wood modified with DMDHEU, calculated on a dry wood basis, was not significantly lower than that of the control. The ratio of bound to total water present in the sample was higher in unmodified than in DMDHEU-modified samples. The proportion of pores with a diameter ≤30 nm was 70% of the total cell wall voids for wood modified with 2.3 M DMDHEU and 18% for unmodified wood. These results indicate that DMDHEU reduced the pore size of the samples by occupying the void space present in the cell wall.


Holzforschung ◽  
2016 ◽  
Vol 70 (2) ◽  
pp. 137-143 ◽  
Author(s):  
Mario Zauer ◽  
Frank Meissner ◽  
Rudolf Plagge ◽  
André Wagenführ

Abstract This paper deals with the determination of the capillary pore-size distribution (CPSD) and equilibrium moisture content (EMC) of untreated and thermally modified (TM) Norway spruce [Picea abies (L.) Karst.] by means of the pressure plate technique (PPT). Desorption experiments were conducted at very high values of relative humidity (RH) in the range between 99.2% and 100%. The thermal modification of spruce results in an alteration of the CPSD, owing to the formation of intercellular cracks in the middle lamella, as a result of cell-wall compression. The desorption curves for both untreated and TM spruce show an extremely upward bend at 99.97% RH. This step reflects an EMC of 38.1% for untreated spruce and 33.8% for TM spruce. None of the samples shrunk during the PPT measurements. Following desorption experiments at 97.4% RH, all samples shrunk. This step reflects an EMC of 27.9% for untreated spruce and 21.7% for TM spruce.


Holzforschung ◽  
2009 ◽  
Vol 63 (1) ◽  
Author(s):  
Alexander Pfriem ◽  
Mario Zauer ◽  
André Wagenführ

Abstract The pore size distribution in wood affects sorption and transport of moisture. In the present paper, the pore structure of spruce and maple was examined in untreated and thermally modified samples. The relative humidities of the specimens were 33%, 43%, 53%, and 76%. Tests were carried out by helium pycnometry and mercury intrusion porosimetry. The results clearly show that thermal treatments change the apparent density, pore structure, and pore size distribution. Measurements by the mercury intrusion porosimetry indicated that the influence of various environmental conditions (humidity, temperature) on the porosity and pore size distribution is small.


2014 ◽  
Vol 48 (4) ◽  
pp. 787-795 ◽  
Author(s):  
Aldo Rolleri ◽  
Francisco Burgos ◽  
Claudio Bravo-Linares ◽  
Ester Vásquez ◽  
Fernando Droppelmann

2019 ◽  
Author(s):  
Paul Iacomi ◽  
Philip L. Llewellyn

Material characterisation through adsorption is a widely-used laboratory technique. The isotherms obtained through volumetric or gravimetric experiments impart insight through their features but can also be analysed to determine material characteristics such as specific surface area, pore size distribution, surface energetics, or used for predicting mixture adsorption. The pyGAPS (python General Adsorption Processing Suite) framework was developed to address the need for high-throughput processing of such adsorption data, independent of the origin, while also being capable of presenting individual results in a user-friendly manner. It contains many common characterisation methods such as: BET and Langmuir surface area, t and α plots, pore size distribution calculations (BJH, Dollimore-Heal, Horvath-Kawazoe, DFT/NLDFT kernel fitting), isosteric heat calculations, IAST calculations, isotherm modelling and more, as well as the ability to import and store data from Excel, CSV, JSON and sqlite databases. In this work, a description of the capabilities of pyGAPS is presented. The code is then be used in two case studies: a routine characterisation of a UiO-66(Zr) sample and in the processing of an adsorption dataset of a commercial carbon (Takeda 5A) for applications in gas separation.


Sign in / Sign up

Export Citation Format

Share Document