scholarly journals The comparative evidence for urban species sorting by anthropogenic noise

2018 ◽  
Vol 5 (2) ◽  
pp. 172059 ◽  
Author(s):  
Gonçalo C. Cardoso ◽  
Yang Hu ◽  
Clinton D. Francis

Anthropogenic noise is more intense at lower sound frequencies, which could decrease urban tolerance of animals with low-frequency vocalizations. Four large comparative studies tested whether anthropogenic noise filters bird species according to the sound frequencies they use and produced discrepant results. We reanalysed data from these studies to explain their different results. Urban tolerance of bird species (defined here as often occurring and breeding in cities) is very weakly related to urban preference or relative abundance (defined based on changes in population density from urban to nearby rural environments). Data on urban preference/abundance are potentially accurate for individual cities but differ among cities for the same species, whereas existing data on urban tolerance are coarser but provide a more global synthesis. Cross-species comparisons find a positive association between the sound frequency of song and urban tolerance, but not urban preference/abundance. We found that showing an association between song frequency and urban tolerance requires controlling for additional species traits that influence urban living. On the contrary, controlling for other species traits is not required to show a positive association between song frequency and use of noisy relative to quiet areas within the same type of environment. Together, comparative evidence indicates that masking by urban noise is part of a larger set of factors influencing urban living: all else being equal, species with high-frequency sounds are more likely to tolerate cities than species with low-frequency sounds, but they are not more likely to prefer, or to be more abundant in, urban than non-urban habitats.

2018 ◽  
Vol 2 (2) ◽  
pp. 1-1 ◽  
Author(s):  
Erin E. Grabarczyk ◽  
Monique A. Pipkin ◽  
Maarten J. Vonhof ◽  
Sharon A. Gill

In response to anthropogenic noise, many bird species adjust their song frequency, presumably to optimize song transmission and overcome noise masking. But the costs of song adjustments may outweigh the benefits during different stages of breeding, depending on the locations of potential receivers. Selection might favor unpaired males to alter their songs because they sing to attract females that may be widely dispersed, whereas paired males might not if mates and neighbors are primary receivers of their song. We hypothesized male house wrens (Troglodytes aedon) respond differently to noise depending on their pairing status. To test our hypothesis we synthesized pink noise, which mimics anthropogenic noise, and played it at three intensities in territories of paired and unpaired focal males. We recorded their songs and analyzed whether song structure varied with pairing status and noise treatment. To validate our study design, we tested whether noise playback affected measurement of spectral song traits and changed noise levels within territories of focal males. Consistent with our predictions, unpaired males sang differently than paired males, giving longer songs at higher rates. Contrary to predictions, paired males changed their songs by increasing peak frequency during high intensity noise playback, whereas unpaired males did not. If adjusting song frequency in noise is beneficial for long-distance communication we would have expected unpaired males to change their songs in response to noise. By adjusting song frequency, paired males reduce masking and produce a song that is easier to hear. However, if females prefer low frequency song, then unpaired males may be constrained by female preference. Alternatively, if noise adjustments are learned and vary with experience or quality, unpaired males in our study population may be younger, less experienced, or lower quality males.


The Auk ◽  
2006 ◽  
Vol 123 (3) ◽  
pp. 650-659 ◽  
Author(s):  
William E. Wood ◽  
Stephen M. Yezerinac

Abstract In urban environments, anthropogenic noise may mask bird song, especially the notes occurring at lower frequencies (1–2 kHz). Birds living in urban environments may modify their songs, particularly the low-frequency portions, to minimize masking by anthropogenic noise. Such modifications have been observed in Great Tits (Parus major) in The Netherlands, as well as in some mammals. We studied Song Sparrows (Melospiza melodia), which are common in both urban and rural environments in much of North America, and recorded the songs of 28 free- living males in Portland, Oregon. We also measured the amplitude and spectrum of ambient noise at singing locations. Song Sparrows singing at noisier locations exhibited higher-frequency low notes and had relatively less energy (amplitude) in the low-frequency range of their songs (1–4 kHz), where most anthropogenic noise also occurred. Although the mechanism(s) producing the correlation are as yet undetermined, the observed match between song and noise may result from behavioral plasticity. We discuss explanations for these patterns and how to test them. Le Chant de Melospiza melodia Varie avec le Bruit Urbain


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 487
Author(s):  
Lillian Collins ◽  
Grant D. Paton ◽  
Sara A. Gagné

The urbanization of landscapes filters bird communities to favor particular species traits, driven in part by the changes that homeowners make to the amount and quality of habitat in yards. We suggest that an ultimate driver of these proximate mechanisms underlying bird community change with respect to urbanization is the likeability of species traits by urban residents. We hypothesize that bird species likeability, modulated by species traits, influences the degree to which homeowners alter the availability and quality of habitat on their properties and thereby affects species population sizes in urbanized landscapes. We refer to this new hypothesis as the Likeable, therefore Abundant Hypothesis. The Likeable, therefore Abundant Hypothesis predicts that (1) bird species likeability varies with species morphological and behavioral traits, (2) homeowners use trait-based likeability as a motivator to modify habitat availability and quality on their properties, and (3) residential habitat availability and quality influences species populations at landscape scales. We tested the first prediction of the Likeable, therefore Abundant Hypothesis using a survey of 298 undergraduate students at the University of North Carolina at Charlotte who were asked to rank their preferences for 85 forest generalist and edge/open country songbird species grouped according to 10 morphological and behavioral traits. Survey respondents preferred very small, primarily blue or black species that are insectivorous, aerial or bark foragers, residents, and culturally unimportant. On the other hand, respondents disliked large or very large, primarily yellow or orange species that forage on the ground and/or forage by flycatching, are migratory, and are culturally important. If the Likeable, therefore Abundant Hypothesis is true, natural resource managers and planners could capitalize on the high likeability of species that are nevertheless negatively affected by urbanization to convince homeowners and residents to actively manage their properties for species conservation.


Oryx ◽  
2006 ◽  
Vol 40 (3) ◽  
pp. 266-278 ◽  
Author(s):  
Stuart H.M. Butchart ◽  
Alison J. Stattersfield ◽  
Nigel J. Collar

Considerable resources and efforts have been directed at biodiversity conservation in recent years, but measures of the success of conservation programmes have been limited. Based on information on population sizes, trends, threatening processes and the nature and intensity of conservation actions implemented during 1994–2004, we assessed that 16 bird species would have probably become extinct during this period if conservation programmes for them had not been undertaken. The mean minimum population size of these 16 species increased from 34 to 147 breeding individuals during 1994–2004. In 1994, 63% of them had declining populations but by 2004, 81% were increasing. Most of these species (63%) are found on islands. The principal threats that led to their decline were habitat loss and degradation (88%), invasive species (50%) and exploitation (38%), a pattern similar to that for other threatened species, but with exploitation and invasive species being relatively more important. The principal actions carried out were habitat protection and management (75% of species), control of invasive species (50%), and captive breeding and release (33%). The 16 species represent only 8.9% of those currently classified as Critically Endangered, and 1.3% of those threatened with extinction. Many of these additional species slipped closer to extinction during 1994–2004, including 164 that deteriorated in status sufficiently to be uplisted to higher categories of extinction risk on the IUCN Red List (IUCN, 2006). Efforts need to be considerably scaled up to prevent many more extinctions in the coming decades. The knowledge and tools to achieve this are available, but we need to mobilize the resources and political will to apply them.


1978 ◽  
Vol 72 (1) ◽  
pp. 43-55 ◽  
Author(s):  
N.H. FLETCHER ◽  
K. G. HILL

The male cicada of the species Cystosoma saundersii has a grossly enlarged, hollow abdomen and emits a loud calling song with a fundamental frequency of about 800 Hz. At the song frequency, its hearing is nondirectional. The female of C. saundersii lacks sound producing organs, has no enlargement of the abdomen, but possesses an abdominal air sac and has well developed directional hearing at the frequency of the species' song. Physical mechanisms are proposed that explain these observations in semi-quantitative detail using the standard method of electrical network analogues. The abdomen in the male, with its enclosed air, is found to act as a system resonant at the song frequency, thus contributing a large gain in radiated sound intensity. Coupling between this resonator and the auditory tympana accounts for the observed hearing sensitivity in the male, but destroys directionality. In the female, the abdominal cavity acts in association with the two auditory tympana as part of a phase shift network which results in appreciable directionality of hearing at the unusually low frequency of the male song.


Ecosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
A. Andrikou‐Charitidou ◽  
G. Boutsis ◽  
E. Karadimou ◽  
A. S. Kallimanis

2010 ◽  
Vol 70 (2) ◽  
pp. 243-254 ◽  
Author(s):  
LT Manica ◽  
M Telles ◽  
MM Dias

Bird species richness is an important measure for monitoring biodiversity changes. We analysed avifauna richness and composition in a 472 ha protected cerrado fragment and surroundings at Fazenda Canchim (RL-CPPSE), São Carlos, in the State of São Paulo (SP). We carried out 95.1 hours of observation (22 visits) at irregular intervals from May 2004 to December 2006. Qualitative surveys were done walking through tracks inside the fragment and on the roads at its edge. We recorded 160 species, six of which were endemic to Cerrado domain, 22 migratory, seven threatened within the State of São Paulo, and two globally threatened. We found 28 species in the cerradão, 110 in the cerrado sensu stricto, 13 in the gallery forest, 26 in the reservoir border, 26 in pasturelands and sugar cane monoculture and 55 in an anthropic area. Most of the species had low frequency of occurrence in all vegetation forms. Insectivores were the major trophic category (46.9%), which is typical in tropical regions, and it is also related to resource availability. Omnivores followed with 19.4%, granivores with 8.8% and frugivores with 7.5%. We conclude that, despite its size and conservation status, our study area has a remarkable bird community and must be considered as a priority conservation area to preserve bird species in Sao Paulo State.


2016 ◽  
Vol 74 (4) ◽  
pp. 1230-1236 ◽  
Author(s):  
Danielle A. Poulton ◽  
Cosima S. Porteus ◽  
Stephen D. Simpson

Ocean acidification (OA) and anthropogenic noise are both known to cause stress and induce physiological and behavioural changes in fish, with consequences for fitness. OA is also predicted to reduce the ocean's capacity to absorb low-frequency sounds produced by human activity. Consequently, anthropogenic noise could propagate further under an increasingly acidic ocean. For the first time, this study investigated the independent and combined impacts of elevated carbon dioxide (CO2) and anthropogenic noise on the behaviour of a marine fish, the European sea bass (Dicentrarchus labrax). In a fully factorial experiment crossing two CO2 levels (current day and elevated) with two noise conditions (ambient and pile driving), D. labrax were exposed to four CO2/noise treatment combinations: 400 µatm/ambient, 1000 µatm/ambient, 400 µatm/pile-driving, and 1000 µatm/pile-driving. Pile-driving noise increased ventilation rate (indicating stress) compared with ambient noise conditions. Elevated CO2 did not alter the ventilation rate response to noise. Furthermore, there was no interaction effect between elevated CO2 and pile-driving noise, suggesting that OA is unlikely to influence startle or ventilatory responses of fish to anthropogenic noise. However, effective management of anthropogenic noise could reduce fish stress, which may improve resilience to future stressors.


2019 ◽  
pp. 266-284
Author(s):  
Gary G. Mittelbach ◽  
Brian J. McGill

Just as the dispersal of individuals may link the dynamics of populations in space, the dispersal of species among communities may link local communities into a metacommunity. Four different perspectives characterize how dispersal rates, environmental heterogeneity, and species traits interact to influence diversity in metacommunities. These perspectives are: patch dynamics, species sorting, mass effects, and the neutral perspective. The neutral perspective stands in stark contrast to the other three perspectives in that it assumes that niche differences between species are unimportant and that species are demographically identical in terms of their birth, death, and dispersal rates. Under the neutral perspective, species diversity is maintained by a balance between speciation, extinction, and dispersal. Although neutral theory is incompatible with realistic modes and rates of speciation, it has been enormously influential in focusing our attention on the linkages between species interactions on local scales, and evolutionary and biogeographic processes occurring on large scales.


1981 ◽  
Vol 8 (3) ◽  
pp. 637 ◽  
Author(s):  
RW Howe ◽  
TD Howe ◽  
HA Ford

We studied bird distributions on 15 small patches of subtropical rainforest, ranging from 0.08 to 2.5 ha, in north-eastern New South Wales. Three-quarters of the bird species found in an extensive area of nearby rainforest were recorded in one or more of these isolated patches. Species that were not recorded, generally were rare in the extensive forest or are characterized by large home ranges. Several species more typical of open country were also found in the isolated patches. The number of resident species per patch ranged from one to 19; these were added in a rather predictable order from small to larger areas. Additional species observed in the patches either were transient or had home ranges encompassing several discontinuous areas. Although area is the best single predictor of species richness, isolation, disturbance by livestock and distance from water all tend to reduce the number of resident bird species. We propose that high dispersal abilities of rainforest birds near Dorrigo reflect the geographical and palaeogeographical distribution of Australian rainforest. The small total area and discontinuity of original tracts of rainforest, perhaps accentuated during the Pleistocene, have generally prevented persistence or colonization of highly sedentary, specialized bird species.


Sign in / Sign up

Export Citation Format

Share Document