scholarly journals Numerical simulation on fracturing behaviour of hard roofs at different levels during extra-thick coal seam mining

2020 ◽  
Vol 7 (1) ◽  
pp. 191383 ◽  
Author(s):  
Rui Gao ◽  
Bingjie Huo ◽  
Hongchun Xia ◽  
Xiangbin Meng

In fully mechanized caving mining of extra-thick coal seams, the movement range of overburden is wide, resulting in the breakage of multilayer hard roofs in overlying large spaces. However, the characteristics, morphology and impact effect of hard roofs at different levels are different and unclear. In this study, a secondary development was used in the numerical simulation software ABAQUS, and the caving of rock strata in the finite-element software was realized. The bearing stress distribution, fracturing morphology and impact energy characteristics of hard roofs at different levels were studied to reflect the action and difference of hard roof failure on the working face; thus, revealing the mechanism of the strong ground pressure in stopes, and providing a theoretical basis for the safe and efficient mining of extra-thick coal seams with hard roofs.

2021 ◽  
Vol 11 (9) ◽  
pp. 4125
Author(s):  
Zhe Xiang ◽  
Nong Zhang ◽  
Zhengzheng Xie ◽  
Feng Guo ◽  
Chenghao Zhang

The higher strength of a hard roof leads to higher coal pressure during coal mining, especially under extra-thick coal seam conditions. This study addresses the hard roof control problem for extra-thick coal seams using the air return roadway 4106 (AR 4106) of the Wenjiapo Coal Mine as a case study. A new surrounding rock control strategy is proposed, which mainly includes 44 m deep-hole pre-splitting blasting for stress releasing and flexible 4-m-long bolt for roof supporting. Based on the new support scheme, field tests were performed. The results show that roadway support failure in traditional scenarios is caused by insufficient bolt length and extensive rotary subsidence of the long cantilever beam of the hard roof. In the new proposed scheme, flexible 4-m-long bolts are shown to effectively restrain the initial expansion deformation of the top coal. The deflection of the rock beam anchored by the roof foundation are improved. Deep-hole pre-splitting blasting effectively reduces the cantilever distance of the “block B” of the voussoir beam structure. The stress environment of the roadway surrounding rock is optimized and anchorage structure damage is inhibited. The results provide insights regarding the safe control of roadway roofs under extra-thick coal seam conditions.


2021 ◽  
Author(s):  
Chuang Liu ◽  
Huamin Li

Abstract In the process of longwall top coal caving, the selection of the top coal caving interval along the advancing direction of the working face has an important effect on the top coal recovery. To explore a realistic top coal caving interval of the longwall top coal caving working face, longwall top coal caving panel 8202 in the Tongxin Coal Mine is used as an example, and 30 numerical simulation models are established by using Continuum-based Distinct Element Method (CDEM) simulation software to study the top coal recovery with 4.0 m, 8.0 m, 12.0 m, 16.0 m, 20.0 m and 24.0 m top coal thicknesses and 0.8 m, 1.0 m, 1.2 m, 1.6 m and 2.4 m top coal caving intervals. The results show that with an increase in the top coal caving interval, the single top coal caving amount increases. The top coal recovery is the highest with a 0.8 m top coal caving interval when the thickness of the top coal is less than 4.0 m, and it is the highest with a 1.2 m top coal caving interval when the coal seam thickness is greater than 4.0 m. These results provide a reference for the selection of a realistic top coal caving interval in thick coal seam caving mining.


2020 ◽  
Vol 2020 ◽  
pp. 1-23
Author(s):  
Shengrong Xie ◽  
Xiaoyu Wu ◽  
Dongdong Chen ◽  
Yaohui Sun ◽  
En Wang ◽  
...  

The surrounding rock of the roadway under double gobs in the lower coal seams is partially damaged by the mining of the upper coal seam and the stress superimposition of the stepped coal pillars. What is worse, the upper layer of the roof is collapse gangue in double gobs, which makes the anchor cable unable to anchor the reliable bearing layer, so the anchoring performance is weakened. The actual drawing forces of the anchor bolt and anchor cable are only approximately 50 kN and 80 kN, respectively. The roadway develops cracks and large deformations with increasing difficulty in achieving safe ventilation. In view of the above problems, taking the close coal seam mining in the Zhengwen Coal Mine as the engineering background, a theoretical calculation is used to obtain the loading of the step coal pillars and the slip line field distribution of the floor depth. The numerical simulation monitors the stress superimposition of stepped coal pillars and the distribution of elastoplastic areas to effectively evaluate the layout of mining roadways. The numerical simulation also analyzes the effective prestress field distribution of the broken roof and grouting roof anchor cable. A laboratory test was used to monitor the strength of the grouting test block of the broken coal body. Then, we proposed that grouting anchor cable be used to strengthen the weak surface of the roof and block the roof cracks. From on-site measurement, the roadway was seen to be arranged in the lateral stress stabilization area of the stepped coal pillars, the combined support technology of the grouting anchor cable (bolt) + U type steel + a single prop was adopted, the roadway deformation was small, the gas influx was reduced, and the drawing force of the anchor bolt and the anchor cable was increased to approximately 160 kN and 350 kN, respectively. The overall design and control technology of the roadway can meet the site safety and efficient production requirements.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xie Fuxing

The gob-side roadway of 130205, a large-mining-height working face in the Yangchangwan coal mine, was investigated in terms of the mine pressure law and support technology for large mining heights and narrow coal pillars for mining roadways. The research included field investigations, theoretical analysis, numerical simulation, field tests, and other methods. This paper analyzes the form of movement for overlying rock structure in a gob-side entry with a large mining height and summarizes the stress state and deformation failure characteristics of the surrounding rock. The failure mechanism of the surrounding rock of the gob-side roadway and controllable engineering factors causing deformation were analyzed. FLAC3D numerical simulation software was used to explore the influence law of coal pillar width, working face mining height, and mining intensity on the stability of the surrounding rock of the gob-side roadway. Ensuring the integrity of the coal pillar, improving the coordination of the system, and using asymmetric support structures as the core support concept are proposed. A reasonably designed support scheme for the gob-side roadway of the working face for 130205 was conducted, and a desirable engineering effect was obtained through field practice verification.


2014 ◽  
Vol 494-495 ◽  
pp. 1008-1011
Author(s):  
Guang Feng ◽  
Song Jian Sun

In the past, the semi-active control study generally is calculated based on the MATLAB numerical procedure, which cant achieve fine simulation. In this paper, to solve this problem, the finite element software ABAQUS is taken to be secondary development, a numerical simulation method of studying semi-active control is proposed. And the seismic response of a steel column is taken for the research. the numerical simulation analysis of the semi-active control is carried out. The results show that the control effect of the control method is significant, and the simulation result is clearly visible.


2014 ◽  
Vol 889-890 ◽  
pp. 1362-1374 ◽  
Author(s):  
Yong Zhang ◽  
Chun Lei Zhang ◽  
Chun Chen Wei ◽  
Ya Dong Liu ◽  
Shi Qing Zhang ◽  
...  

In order to make sure the reasonable roadway layout in lower seam of close coal mining group coordination in Lijiahao coal mine, firstly, applying the theoretical analysis and geological radar detection to get the influence depth of mining from the up coal seam 2-2 to the floor is about 20m, the results show that the thickness of complete strata is about 15m, then determining to use the outward alternate entries in lower seam roadway by using theoretical analysis. At last, determining the distance of outward alternate entries is 12-14m by using FLAC3D numerical simulation software to simulate the change of stress and displacement in roof floor and two sides of roadway.


2014 ◽  
Vol 1065-1069 ◽  
pp. 71-75
Author(s):  
Shuai Hua ◽  
Yun An Li ◽  
Yue Wei Wang ◽  
Qin Gang Wang ◽  
Wei Wang ◽  
...  

It is mainly discussed that the minimum safe thickness of the stope roof and the ground subsidence deformation during mine excavation. The concrete method is deducing the theoretical calculation formula of minimum thickness of the stope roof according to the bending and shearing structural mechanics model respectively so as to gain the minimum safe thickness; A detailed engineering geological 3d model for mining concessions is built by using Auto CAD,and next a numerical calculation model is established by using ANSYS finite element software,following by importing it to numerical simulation software FLAC3D for calculation. By this method,the whole process of mine excavation can be simulated. Finally,the ground subsidence deformation obtained by simulation satisfies the specification requirements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chuang Liu ◽  
Huamin Li

AbstractIn the process of longwall top coal caving, the selection of the top coal caving interval along the advancing direction of the working face has an important effect on the top coal recovery. To explore a realistic top coal caving interval of the longwall top coal caving working face, longwall top coal caving panel 8202 in the Tongxin Coal Mine is used as an example, and 30 numerical simulation models are established by using Continuum-based Distinct Element Method simulation software to study the top coal recovery with 4.0 m, 8.0 m, 12.0 m, 16.0 m, 20.0 m and 24.0 m top coal thicknesses and 0.8 m, 1.0 m, 1.2 m, 1.6 m and 2.4 m top coal caving intervals. The results show that with an increase in the top coal caving interval, the single top coal caving amount increases. The top coal recovery is the highest with a 0.8 m top coal caving interval when the thickness of the top coal is 4.0 m, and it is the highest with a 1.2 m top coal caving interval when the coal seam thickness is greater than 4.0 m. These results provide a reference for the selection of a realistic top coal caving interval in thick coal seam caving mining.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2470 ◽  
Author(s):  
Yiwen Lan ◽  
Rui Gao ◽  
Bin Yu ◽  
Xiangbin Meng

The movements of overburden induced by mining a thick coal seam with a hard roof extend widely. The effects of breakages in the hard strata on the strata behaviors might vary with the overlying strata layers. For this reason, we applied a test method that integrated a borehole TV tester, borehole-based monitoring of strata movement, and monitoring of support resistance for an in situ investigation of a super-thick, 14–20 m coal seam mining in the Datong mining area in China. The results showed that the range of the overburden movement was significantly high, which could reach to more than 300 m. The key strata (KS) in the lower layer main roof were broken into a ‘cantilever beam and voussoir beam’ structure. This structure accounted for the ‘long duration and short duration’ strata behaviors in the working face. On the other hand, the hard KS in the upper layer broke into a ‘high layer structure’. The structural instability induced intensive and wide-ranging strata behaviors that lasted for a long time (two to three days). Support in the working face were over-pressured by large dynamic factors and were widely crushed, while the roadways were violently deformed. Hence, the structure of a thick coal seam with a hard roof after mining will form a ‘cantilever beam and voussoir beam and high layer structure’, which is unique to a large space stope.


Sign in / Sign up

Export Citation Format

Share Document