scholarly journals Context-dependent effects of relative temperature extremes on bill morphology in a songbird

2020 ◽  
Vol 7 (4) ◽  
pp. 192203
Author(s):  
Katie LaBarbera ◽  
Kyle J. Marsh ◽  
Kia R. R. Hayes ◽  
Talisin T. Hammond

Species increasingly face environmental extremes. Morphological responses to changes in average environmental conditions are well documented, but responses to environmental extremes remain poorly understood. We used museum specimens to investigate relationships between a thermoregulatory morphological trait, bird bill surface area (SA) and a measure of short-term relative temperature extremity (RTE), which quantifies the degree that temperature maxima or minima diverge from the 5-year norm. Using a widespread, generalist species, Junco hyemalis , we found that SA exhibited different patterns of association with RTE depending on the overall temperature regime and on precipitation. While thermoregulatory function predicts larger SA at higher RTE, we found this only when the RTE existed in an environmental context that opposed it: atypically cold minimum temperature in a warm climate, or atypically warm maximum temperature in a cool climate. When environmental context amplified the RTE, we found a negative relationship between SA and RTE. We also found that the strength of associations between SA and RTE increased with precipitation. Our results suggest that trait responses to environmental variation may qualitatively differ depending on the overall environmental context, and that environmental change that extremifies already-extreme environments may produce responses that cannot be predicted from observations in less-extreme contexts.

2021 ◽  
pp. e001934
Author(s):  
Michael John Stacey ◽  
S Brett ◽  
G Fitchett ◽  
N E Hill ◽  
D Woods

Extreme environments present medical and occupational challenges that extend beyond generic resuscitation, to formulating bespoke diagnoses and prognoses and embarking on management pathways rarely encountered in civilian practice. Pathophysiological complexity and clinical uncertainty call for military physicians of all kinds to balance intuition with pragmatism, adapting according to the predominant patterns of care required. In an era of smaller operational footprints and less concentrated clinical experience, proposals aimed at improving the systematic care of Service Personnel incapacitated at environmental extremes must not be lost to corporate memory. These general issues are explored in the particular context of thermal stress and metabolic disruption. Specific focus is given to the accounts of military physicians who served on large-scale deployments into the heat of Iraq and Kuwait (Operation TELIC) and Oman (Exercise SAIF SAREEA). Generalisable insights into the enduring character of military medicine and future clinical requirements result.


MAUSAM ◽  
2022 ◽  
Vol 53 (1) ◽  
pp. 57-62
Author(s):  
RAJ SINGH ◽  
V. U. M. RAO ◽  
DIWAN SINGH

Field experiment was conducted for two crop seasons (1996-97 & 1997-98) at CCS, HAU, Hisar research farm to study the effect of weather parameters on growth and yield of mustard. The results indicated that an increase in maximum temperature and duration of sunshine hours resulted in increased leaf area index (LAI). The increase in daytime temperature resulted in higher biomass accumulation during vegetative phase, but the trend was reversed during physiological maturity. The biomass accumulation in brassicas increased with increase in evaporation rate during the grand growth period. However, latter on during the physiological maturity, increase in evaporation rate resulted in decline of biomass accumulation. Further, it was noted that the magnitudes of some important weather parameters (maximum and minimum temperatures, pan evaporation and morning relative humidity) during the vegetative phase of crop played decisive role in deciding the quantum of seed yield which is a resultant of various yield attributes. The rainfall during the crop growing season either have no association or had a negative relationship with yield and yield attributes because crop never experienced water stress as abundant moisture was made available through irrigation.


1991 ◽  
Vol 31 (1) ◽  
pp. 386 ◽  
Author(s):  
Alan J. Sheehy

For over 40 years it has been speculated that bacteria can facilitate, increase or extend oil production from petroleum reservoirs. This speculation was supported in the laboratory by dramatic increases in oil recovered from experimental systems and in the field by anecdotal accounts of improvements in oil production. Most of these studies were poorly conceived and inadequately controlled. This drew industry criticism and created an environment where proposals to implement microbiologically enhanced oil recovery (microbial EOR) were summarily dismissed. The program implemented for the Alton Field, Surat Basin, was designed to overcome industry scepticism and document unambiguously in the field the effectiveness of a new microbial EOR strategy called Biological Stimulation of Oil production (BOS). An approximate 40 per cent increase in oil production has been sustained, compared to control operations on the same well, for eighteen months.The thrust to introduce pilot and field programs of BOS is compelling. BOS shares the advantages common to all biotechnologies in exploiting the extraordinary growth potential of microorganisms, providing flexibility through the extreme diversity of microbial metabolites and using cheap feedstocks. The BOS process generates ultramicrocells from those bacteria present naturally in the reservoir to be treated. This promotes injectivity, dispersion and persistence of the BOS system in the extreme environments which characterise petroleum reservoirs. The nutrients injected with the ultramicrocells result in metabolites forming within the bacterial cell surface. These metabolites cause re-profiling of the formation through the generation of emulsions and the development of concentrated surfactants at the oil-water interface.Ecological strategies designed to negate previously documented problems in the application of microbial EOR have been shown to be effective in laboratory experiments and field applications. Overcoming environmental extremes and developing persistence of beneficial organisms have been given special attention.


2011 ◽  
Vol 28 (1) ◽  
pp. 105-118 ◽  
Author(s):  
Christie A. Klimas ◽  
Karen A. Kainer ◽  
Lúcia H. Wadt ◽  
Christina L. Staudhammer ◽  
Valéria Rigamonte-Azevedo ◽  
...  

Abstract:During 5 y, we monitored reproductive activity and seed production of Carapa guianensis in two forest types to test the hypothesis that seed production is influenced by multiple factors across scales (regional climatic cues, local habitat heterogeneity and individual tree attributes). Variability in seed production was moderate at the population (CVp = 1.25) and individual level (xCVi = 1.24). A mixed model with a Poisson regression revealed that seed production was explained by variables at all scales. Total seed production was significantly higher in occasionally inundated forests. Diameter at breast height, dbh2, crown cross-sectional area, liana load, density, dry-season rainfall and mean maximum temperature were also significant in explaining seed production variation. Seed production increased with dbh until 40–50 cm, then decreased. Liana load demonstrated a negative relationship with seed production, but only in terra firme forests. Climatic cues (rainfall and temperature parameters) were central to setting overall patterns in reproductive activity and seemed to best explain why years with high seed production were consistent across the two forest types (habitats) examined. Dry-season rainfall was positively correlated with seed production.


2019 ◽  
Author(s):  
Carine Emer ◽  
Pedro Jordano ◽  
Marco A. Pizo ◽  
Milton C. Ribeiro ◽  
Fernanda R. da Silva ◽  
...  

ABSTRACTSeed dispersal interactions involve key ecological processes in tropical forests that help to maintain ecosystem functioning. Yet this functionality may be threatened by increasing habitat loss, defaunation and fragmentation. However, generalist species, and their interactions, can benefit from the habitat change caused by human disturbance while more specialized interactions mostly disappear. Therefore changes in the structure of the local, within fragment, networks can be expected. Here we investigated how the structure of seed-dispersal networks changes along a gradient of increasing habitat fragmentation. We analysed 16 bird seed-dispersal assemblages from forest fragments of a biodiversity-rich ecosystem. We found significant species-, interaction- and network-area relationships, yet the later was determined by the number of species remaining in each community. The number of frugivorous bird and plant species, their interactions, and the number of links per species decreases as area is lost in the fragmented landscape. In contrast, network nestedness has a negative relationship with fragment area, suggesting an increasing generalization of the network structure in the gradient of fragmentation. Network specialization was not significantly affected by area, indicating that some network properties may be invariant to disturbance. Still, the local extinction of partner species, paralleled by a loss of interactions and specialist-specialist bird-plant seed dispersal associations suggests the functional homogenization of the system as area is lost. Our study provides empirical evidence for network-area relationships driven by the presence/absence of remnant species and the interactions they perform.RESUMOInterações de dispersão de sementes formam um processo ecológico chave em florestas tropicais onde colaboram na manutenção do funcionamento do ecossistema. Porém, esta funcionalidade pode estar ameaçada pelo aumento na perda e fragmentação do habitat. Enquanto espécies generalistas e suas interações podem se beneficiar da mudança de habitat causada por distúrbios antrópicos, interações envolvendo espécies mais especialistas são, na maioria, eliminadas. Desta forma, mudanças nas redes locais, dentro de fragmentos florestais, são esperadas. Neste trabalho nós investigamos como a estrutura de redes de dispersão de sementes mudam em um gradiente de fragmentação do habitat. Nós analisamos 16 comunidades de dispersão de sementes espacialmente explícitas e distribuídas em fragmentos florestais de um ecossistema rico em biodiversidade. Nós encontramos relações significativas entre a área do fragmento e espécies, interações e estrutura das redes, sendo que o último foi determinado pelo número de espécies remanescentes em cada comunidade. O número de espécies de aves frugívoras e plantas e as interações entre eles, bem como o número de links por espécie diminuíram significativamente conforme a área dos fragmentos é perdida. Por outro lado, o aninhamento da rede mostrou uma relação negativa com a área do fragmento, sugerindo um aumento da generalização da estrutura das redes com a fragmentação do habitat. No entanto, o grau de especialização das redes não foi afetado pela área, indicando que algumas propriedades de rede podem ser resistentes à perturbação. Sendo assim, a extinção local de espécies parceiras, conjuntamente com a perda das interações e associações planta-dispersor mais especializadas, sugere uma homogeneização do sistema conforme a área do fragmento é perdida. Nosso estudo fornece evidências empíricas para as relações rede-área, sendo estas direcionadas pela presença e/ou ausência das espécies remanescentes bem como das interações que estas realizam.


2020 ◽  
Author(s):  
LADISLAS NSHIMIYIMANA ◽  
Peris Monchari Onyambu ◽  
Erigene Rutayisire

Abstract Background: The Diarrhoeal diseases remain to be a public health concern despite the existence of preventive measures and developing are the most affected. It affects more children less than five years compared to the rest of the population. The burden of childhood diarrhoea varies with geographical area and time bound. A part from this variation, the link between climate change and diarrhoea among under-five children has not been well understood. This study aims to determine the trends, spatial temporal and seasonal characteristics of diarrhoea diseases among Rwandan under-five children using routine Health Management Information System (HMIS) data from 2014 to 2018. Methods: Data on cases of diarrhoeal diseases in children under-five years were extracted from HMIS for a period of 5 years. The Rwanda Meteorology Agency provided climatology data including daily minimum and maximum temperature, and daily rainfall. Incidence rate were calculated to examine the trend, and excess hazard was assessed to determine the risk and likelihood for the occurrence of cases. Linear regression was used to assess relationship between climatology variables and the occurrence of diarrhoea. Results: 1,012,827 new diarrhoeal diseases episodes were reported. Excess risk was noticed in 40% of country’s districts. We found a statistically significant positive and negative relationship between diarrhoeal disease, and maximum temperature and mean monthly rainfall respectively (p<0.001). Increase in one millimeter of rainfall was associated with decrease of 14 cases of diarrhoea while increase of one degree Celsius of maximum temperature was associated with an increase of 15 diarrhoea cases. Conclusion: More districts with risk of diarrhoea were remarked which require targeted control intervention. Furthermore, significant association between diarrhoea case and climate dynamics was observed. This call for the public attention to climate changes which affect health especially children aged less than five years. Key words: Diarrhoeal, children under five, spatiotemporal, temperature, rainfall


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2376 ◽  
Author(s):  
Amy M. Savage ◽  
Justin Hills ◽  
Katherine Driscoll ◽  
Daniel J. Fergus ◽  
Amy M. Grunden ◽  
...  

High-throughput sequencing techniques have opened up the world of microbial diversity to scientists, and a flurry of studies in the most remote and extreme habitats on earth have begun to elucidate the key roles of microbes in ecosystems with extreme conditions. These same environmental extremes can also be found closer to humans, even in our homes. Here, we used high-throughput sequencing techniques to assess bacterial and archaeal diversity in the extreme environments inside human homes (e.g., dishwashers, hot water heaters, washing machine bleach reservoirs, etc.). We focused on habitats in the home with extreme temperature, pH, and chemical environmental conditions. We found a lower diversity of microbes in these extreme home environments compared to less extreme habitats in the home. However, we were nonetheless able to detect sequences from a relatively diverse array of bacteria and archaea. Habitats with extreme temperatures alone appeared to be able to support a greater diversity of microbes than habitats with extreme pH or extreme chemical environments alone. Microbial diversity was lowest when habitats had both extreme temperature and one of these other extremes. In habitats with both extreme temperatures and extreme pH, taxa with known associations with extreme conditions dominated. Our findings highlight the importance of examining interactive effects of multiple environmental extremes on microbial communities. Inasmuch as taxa from extreme environments can be both beneficial and harmful to humans, our findings also suggest future work to understand both the threats and opportunities posed by the life in these habitats.


2021 ◽  
Author(s):  
Maybellene P Gamboa ◽  
Cameron K Ghalambor ◽  
T Scott Sillett ◽  
W Chris Funk ◽  
Ross A Furbush ◽  
...  

Inferring the environmental selection pressures responsible for phenotypic variation is a challenge in adaptation studies as traits often have multiple functions and are shaped by complex selection regimes. We provide experimental evidence that morphology of the multifunctional avian bill is related to climate, not foraging efficiency, in song sparrows (Melospiza melodia) on the California Channel Islands. Our research builds on a study in song sparrow museum specimens that demonstrated a positive correlation between bill surface area and maximum temperature, suggesting a greater demand for dry heat dissipation in hotter, xeric environments. We sampled contemporary sparrow populations across three climatically distinct islands to test the alternate hypotheses that song sparrow bill morphology is either a product of vegetative differences with functional consequences for foraging efficiency or related to maximum temperature and, consequently, important for thermoregulation. Measurements of >500 live individuals indicated a significant, positive relationship between maximum temperature and bill surface area when correcting for body size. In contrast, maximum bite force, seed extraction time, and vegetation on breeding territories (a proxy for food resources) were not significantly associated with bill dimensions. While we cannot exclude the influence of foraging ability and diet on bill morphology, our results are consistent with the hypothesis that variation in song sparrows' need for thermoregulatory capacity across the northern Channel Islands selects for divergence in bill surface area.


2021 ◽  
Vol 11 ◽  
Author(s):  
Andrew P. Koutnik ◽  
Michelle E. Favre ◽  
Karina Noboa ◽  
Marcos A. Sanchez-Gonzalez ◽  
Sara E. Moss ◽  
...  

Human adaptation to extreme environments has been explored for over a century to understand human psychology, integrated physiology, comparative pathologies, and exploratory potential. It has been demonstrated that these environments can provide multiple external stimuli and stressors, which are sufficient to disrupt internal homeostasis and induce adaptation processes. Multiday hyperbaric and/or saturated (HBS) environments represent the most understudied of environmental extremes due to inherent experimental, analytical, technical, temporal, and safety limitations. National Aeronautic Space Agency (NASA) Extreme Environment Mission Operation (NEEMO) is a space-flight analog mission conducted within Florida International University’s Aquarius Undersea Research Laboratory (AURL), the only existing operational and habitable undersea saturated environment. To investigate human objective and subjective adaptations to multiday HBS, we evaluated aquanauts living at saturation for 9–10 days via NASA NEEMO 22 and 23, across psychologic, cardiac, respiratory, autonomic, thermic, hemodynamic, sleep, and body composition parameters. We found that aquanauts exposed to saturation over 9–10 days experienced intrapersonal physical and mental burden, sustained good mood and work satisfaction, decreased heart and respiratory rates, increased parasympathetic and reduced sympathetic modulation, lower cerebral blood flow velocity, intact cerebral autoregulation and maintenance of baroreflex functionality, as well as losses in systemic bodyweight and adipose tissue. Together, these findings illustrate novel insights into human adaptation across multiple body systems in response to multiday hyperbaric saturation.


2016 ◽  
Vol 283 (1832) ◽  
pp. 20160626 ◽  
Author(s):  
Kathleen R. Smith ◽  
Viviana Cadena ◽  
John A. Endler ◽  
Warren P. Porter ◽  
Michael R. Kearney ◽  
...  

Many terrestrial ectotherms are capable of rapid colour change, yet it is unclear how these animals accommodate the multiple functions of colour, particularly camouflage, communication and thermoregulation, especially when functions require very different colours. Thermal benefits of colour change depend on an animal's absorptance of solar energy in both UV–visible (300–700 nm) and near-infrared (NIR; 700–2600 nm) wavelengths, yet colour research has focused almost exclusively on the former. Here, we show that wild-caught bearded dragon lizards ( Pogona vitticeps ) exhibit substantial UV–visible and NIR skin reflectance change in response to temperature for dorsal but not ventral (throat and upper chest) body regions. By contrast, lizards showed the greatest temperature-independent colour change on the beard and upper chest during social interactions and as a result of circadian colour change. Biophysical simulations of heat transfer predicted that the maximum temperature-dependent change in dorsal reflectivity could reduce the time taken to reach active body temperature by an average of 22 min per active day, saving 85 h of basking time throughout the activity season. Our results confirm that colour change may serve a thermoregulatory function, and competing thermoregulation and signalling requirements may be met by partitioning colour change to different body regions in different circumstances.


Sign in / Sign up

Export Citation Format

Share Document