scholarly journals Investigation of sag behaviour for aluminium conductor steel reinforced considering tensile stress distribution

2021 ◽  
Vol 8 (8) ◽  
pp. 210049
Author(s):  
Deming Guo ◽  
Pengyu Wang ◽  
Wencheng Zheng ◽  
Yang Li ◽  
Junwen Li ◽  
...  

Sag calculation plays an important role in overhead line design. Since the tensile stress of aluminium conductor steel reinforced (ACSR) is required for the sag calculation, an analysis on sag behaviour when considering the tensile stress distribution can be very useful to improve the accuracy of sag results. First, this paper analyses the ACSR tensile stress distribution arising from the temperature maldistribution through proposing a new calculation formula. A finite-element analysis (FEA) model of ACSR is conducted for the solution of the new formula. By using the results, the error and limitations of the existing sag calculation methods for ACSR are discussed. As the critical point of sag calculation, knee-point temperature is solved iteratively involving the tensile stress maldistribution phenomenon in aluminium wires. Based on this iterative solution, an improved analytical method for the ACSR sag calculation considering the creep effect is presented and also compared with the hybrid sag method. The results show that these two methods are basically coincident without the consideration of creep effect, while there are non-negligible differences between them as the creep strain is involved. Compared with the existing analytical methods, the improved sag calculation method proposed in this paper can be applied in more extensive situations.

Author(s):  
Young Sup Kang ◽  
Ryan D. Evans ◽  
Gary L. Doll

Tribological coatings for mechanical components such as bearings and gears can experience failure occurring at the surface for highly localized contact conditions. In the present study, a finite element analysis (FEA) model was developed to study the stress distribution and deformation of tungsten carbide reinforced amorphous hydrocarbon coatings with and without columnar microstructures under nanoindentation. Results show that the microstructure of these tribological coatings significantly influences the stress distribution and deformation under heavily loaded conditions.


Author(s):  
A. Mian ◽  
M. Hailat ◽  
G. Newaz ◽  
R. Patwa ◽  
H. Herfurth

This paper presents the results of laser joined copper-aluminum lap shear samples without filler materials using an IPG 500W SM fiber laser. The length of the processed laser joint was about 20 mm and the width was about 200 μm. Laser-joined samples were tested under tensile loading to determine joint strengths. In addition, finite element analysis (FEA) was conducted to understand the stress distribution within the bond area under such loading. The FEA model provides a full-field stress distribution in and around the joint that cause eventual failure. We are still working on the topic, and more data will be published soon.


2016 ◽  
Vol 842 ◽  
pp. 53-60
Author(s):  
Syarif Hidayat ◽  
Bambang K. Hadi ◽  
Hendri Syamsudin ◽  
Sandro Mihradi

Stresses were calculated for orthotropic laminate plate loaded by a frictionless pin in a circular hole of the same diameter. These calculations were based on finite-element analysis for five laminates; 00, [±450]s, [00/900]s,[00/±450]s, and quasi-isotropic [00/±450/900]s. stress distribution, based on nominal bearing stress, were determined for wide ranges of the ratios of width to diameter and edge distance to diameter. Orthotropic had a significant influence on both the magnitude and location of the maximum tensile stress concentration on the boundary of the hole. The laminates with 00 plies developed the peak tensile stress near the ends of the pin-hole contact arc. But the ±450 laminates had peaks where ply fiber were tangent to the hole. The finite width and edge distances strongly influenced the tensile stress concentration. In contrast, the finite widths and edge distances had little effect on bearing stress concentration. For the practical range w/d = 2, the peak tensile stresses were as much as 50 percent larger than the infinite-laminate value. For e/d=1, these stresses were greater 60 percent than infinite-laminate value. In contrast, the finite width and edge distance had little effect on bearing stress concentrations.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Cleidiel Aparecido Araujo Lemos ◽  
Fellippo Ramos Verri ◽  
Joel Ferreira Santiago Junior ◽  
Victor Eduardo de Souza Batista ◽  
Daniel Takanori Kemmoku ◽  
...  

The aim of this study was to evaluate stress distribution in the implants/components and bone tissue for splinted and nonsplinted prostheses with different lengths of implants using three-dimensional finite element analysis. Six models from the posterior maxillary area were used in simulations. Each model simulated three Morse taper implants of 4.0 mm diameter with different lengths, which supported metal-ceramic crowns. An axial load of 400 N and an oblique load of 200 N were used as loading conditions. Splinted prostheses exhibited better stress distribution for the implants/components, whereas nonsplinted prostheses exhibited higher stress in the first molar under axial/oblique loading. Implant length did not influence stress distribution in the implants/components. In cortical bone tissue, splinted prostheses decreased the tensile stress in the first molar, whereas nonsplinted prostheses were subjected to higher tensile stress in the first molar; implant length had no influence on stress distribution. Within the limitations of this study, we conclude that splinted prostheses contributed to better stress distribution in the implant/abutment and cortical bone tissue; however, the reduction in the implant length did not influence the stress distribution.


1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kamontip Sujaritwanid ◽  
Boonsiva Suzuki ◽  
Eduardo Yugo Suzuki

Abstract Background The purpose of this study was to compare the stress distribution and displacement patterns of the one versus two maxillary molars distalization with iPanda and to evaluate the biomechanical effect of distalization on the iPanda using the finite element method. Methods The finite element models of a maxillary arch with complete dentition, periodontal ligament, palatal and alveolar bone, and an iPanda connected to a pair of midpalatal miniscrews were created. Two models were created to simulate maxillary molar distalization. In the first model, the iPanda was connected to the second molar to simulate a single molar distalization. In the second model, the iPanda was connected to the first molar to simulate “en-masse” first and second molar distalization. A varying force from 50 to 200 g was applied. The stress distribution and displacement patterns were analyzed. Results For one molar, the stress was concentrated at the furcation and along the distal surface in all roots with a large amount of distalization and distobuccal crown tipping. For two molars, the stress in the first molar was 10 times higher than in the second molar with a great tendency for buccal tipping and a minimal amount of distalization. Moreover, the stress concentration on the distal miniscrew was six times higher than in the mesial miniscrew with an extrusive and intrusive vector, respectively. Conclusions Individual molar distalization provides the most effective stress distribution and displacement patterns with reduced force levels. In contrast, the en-masse distalization of two molars results in increased force levels with undesirable effects in the transverse and vertical direction.


2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1654
Author(s):  
Poojitha Vurtur Badarinath ◽  
Maria Chierichetti ◽  
Fatemeh Davoudi Kakhki

Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.


Sign in / Sign up

Export Citation Format

Share Document