scholarly journals Wake characteristics of a freely rotating bioinspired swept rotor blade

2021 ◽  
Vol 8 (7) ◽  
pp. 210779
Author(s):  
Asif Shahriar Nafi ◽  
Krishnamoorthy Krishnan ◽  
Anup K. Debnath ◽  
Erin E. Hackett ◽  
Roi Gurka

Rotor blades can be found in many engineering applications, mainly associated with converting energy from fluids to work (or electricity). Rotor blade geometry is a key factor in the mechanical efficiency of the energy conversion process. For example, wind turbines' performance directly depends on the blade geometry and the wake flow formed behind them. We suggest to use a bioinspired blade based on the common swift wing. Common swift ( Apus apus ) is known to be a long-distance flyer, able to stay aloft for long periods of time by maintaining high lift and low drag. We study the near-wake flow characteristics of a freely rotating rotor with swept blades and its aerodynamic loads. These are compared with a straight-bladed rotor. The experiments were conducted in a water flume using particle image velocimetry (PIV) technique. Both blades were studied for four different flow speeds with freestream Reynolds numbers ranging from 23 000 to 41 000. Our results show that the near wake developed behind the swept-back blade was significantly different from the straight blade configuration. The near wake developed behind the swept-back blade exhibited relatively lower momentum loss and suppressed turbulent activity (mixing and production) compared with the straight blade. Comparing the aerodynamic characteristics, though the swept-back blade generated relatively less lift than the straight blade, the drag was relatively low. Thus, the swept-back blade produced two to three times higher lift-to-drag ratio than the straight blade. Based on these observations, we suggest that, with improved design optimizations, using the swept-back configuration in rotor blades (specifically used in wind turbines) can improve mechanical efficiency and reduce the energy loss during the conversion process.

2013 ◽  
Vol 842 ◽  
pp. 445-448
Author(s):  
Wei Chao Yang ◽  
Chuan He ◽  
Li Min Peng

This paper describes the results of numerical work to determine the flow structures of the slipstream and wake of a high speed train on platforms of underground rail station using three-dimensional compressible Euler equation. The simulations were carried out on a model of a simplified three-coach train and typical cross-section of Chinese high-speed railway tunnel. A number of issues were observed: change process of slipstreams, longitudinal and horizontal distribution characteristics of train wind. Localized velocity peaks were obtained near the nose of the train and in the near wake region. Maximum and minimum velocity values were also noticed near to the nose rear tip. These structures extended for a long distance behind the train in the far wake flow. The slipstream in platform shows the typical three-dimensional characteristics and the velocity is about 4 m/s at 6 m away from the edge of platform.


Author(s):  
Kirubakaran Purushothaman ◽  
Sankar Kumar Jeyaraman ◽  
Ajay Pratap ◽  
Kishore Prasad Deshkulkarni

This paper describes a methodology for obtaining correct blade geometry of high aspect ratio axial compressor blades during running condition taking into account of blade untwist and bending. It discusses the detailed approach for generating cold blade geometry for axial compressor rotor blades from the design blade geometry using fluid structure interaction technique. Cold blade geometry represents the rotor blade shape at rest, which under running condition deflects and takes a new operating blade shape under centrifugal and aerodynamic loads. Aerodynamic performance of compressor primarily depends on this operating rotor blade shape. At design point it is expected to have the operating blade shape same as the intended design blade geometry and a slight mismatch will result in severe performance deterioration. Starting from design blade profile, an appropriate cold blade profile is generated by applying proper lean and pre-twist calculated using this methodology. Further improvements were carried out to arrive at the cold blade profile to match the stagger of design profile at design operating conditions with lower deflection and stress for first stage rotor blade. In rear stages, thermal effects will contribute more towards blade deflection values. But due to short blade span, deflection and untwist values will be of lower values. Hence difference between cold blade and design blade profile would be small. This methodology can especially be used for front stage compressor rotor blades for which aspect ratio is higher and deflections are large.


Author(s):  
Yuntian Ge ◽  
Xiuling Wang

Wind turbines rotation was motivated by the force of wind. In reality, wind doesn’t moving vertically to the wind turbine rotation plane, but in random directions instead. Therefore, the yawed effect has to be taken into consideration when study wind turbine aerodynamic performance. The purpose of this study is to compare the difference between the wind turbine near wake flow with yawed effect and without yawed effect aerodynamically. The research uses CFD technology to simulate the rotation movement and air flow pattern, which is completed in software Ansys Workbench.


2018 ◽  
Vol 9 (1) ◽  
pp. 100 ◽  
Author(s):  
Zhenye Sun ◽  
Wei Zhu ◽  
Wen Shen ◽  
Emre Barlas ◽  
Jens Sørensen ◽  
...  

The propagation of aerodynamic noise from multi-wind turbines is studied. An efficient hybrid method is developed to jointly predict the aerodynamic and aeroacoustics performances of wind turbines, such as blade loading, rotor power, rotor aerodynamic noise sources, and propagation of noise. This numerical method combined the simulations of wind turbine flow, noise source and its propagation which is solved for long propagation path and under complex flow environment. The results from computational fluid dynamics (CFD) calculations not only provide wind turbine power and thrust information, but also provide detailed wake flow. The wake flow is computed with a 2D actuator disc (AD) method that is based on the axisymmetric flow assumption. The relative inflow velocity and angle of attack (AOA) of each blade element form input data to the noise source model. The noise source is also the initial condition for the wave equation that solves long distance noise propagation in frequency domain. Simulations were conducted under different atmospheric conditions which showed that wake flow is an important part that has to be included in wind turbine noise propagation.


Author(s):  
Ahmet Ozbay ◽  
Wei Tian ◽  
Hui Hu

An experimental study was carried out to investigate the aeromechanics and wake characteristics of dual-rotor wind turbines (DRWTs) with co- and counter-rotating configurations, in comparison to those of a conventional singlerotor wind turbine (SRWT), in order to elucidate the underlying physics to explore/optimize design of wind turbines for higher power yield and better durability. The experiments were performed in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) wind tunnel under neutral stability conditions. In addition to measuring the power output performance of DRWT and SRWT systems, static and dynamic wind loads acting on those systems were also investigated. Furthermore, a high resolution PIV system was used for detailed near wake flow field measurements (free-run and phase-locked) so as to quantify the near wake turbulent flow structures and observe the transient behavior of the unsteady vortex structures in the wake of DRWT and SRWT systems. In the light of the promising experimental results on DRWTs, this study can be extended further to investigate the turbulent flow in the far wake of DRWTs and utilize multiple DRWTs in different wind farm operations.


Author(s):  
Yi-Chih Chow ◽  
Oguz Uzol ◽  
Joseph Katz

This paper presents detailed experimental data on the flow and turbulence within the wake and boundary layer of a rotor blade operating behind a row of Inlet Guide Vanes (IGVs). The experiments are performed in a refractive index matched facility that provides an unobstructed view of the entire flow field. Results of the high-resolution 2D Particle Image Velocimetry (PIV) measurements are used for characterizing the mean flow, Reynolds stresses, turbulent kinetic energy as well as dissipation and production rates. Dissipation and production rates are high and of the same order of magnitude near the trailing edge, and decrease rapidly with increasing distance from the blade. The trend is reversed in the wake kinking region, resulting in elevated turbulence levels, i.e. a turbulent hot spot. One-dimensional spectral analysis shows that, except for the very near wake and hot-spot regions, the turbulence within the rotor wake can be assumed to be isotropic. Also the directions of the maximum shear strain and shear stress are aligned in that region, i.e. consistent with eddy viscosity type Reynolds stress models. The rotor near wake mainly consists of two parallel layers experiencing planar shear with opposite signs as one would expect to find in a 2D wake. However, orientation differences can extend up to 45° near the trailing edge and the hot-spot. Furthermore, there is substantial mismatch in the location of the local maxima of stresses and strains. The values of S33 are also large there, indicating that the flow is three-dimensional. Rotor boundary layer measurements focus on a region where the IGV wake intersects with the rotor blade. The impingement of the increased axial velocity region in between the IGV wakes causes the thinning of the boundary layer. This is similar to the effect of a turbulent jet impinging on a flat surface. When viewed in the frame of reference of “non-wake” flow regions, the boundary layer thinning can also be attributed to the suction (or “negative jet”) effect of the “slip velocity” present in the IGV wake segments. Spectral analysis shows that the turbulence in the rotor boundary layer is highly anisotropic. As a result, the spectra cannot be used for estimating the dissipation rate.


2021 ◽  
Vol 11 (18) ◽  
pp. 8700
Author(s):  
Ann-Marie Parrey ◽  
Daniel Gleichauf ◽  
Michael Sorg ◽  
Andreas Fischer

Defects on rotor blade leading edges of wind turbines can lead to premature laminar–turbulent transitions, whereby the turbulent boundary layer flow forms turbulence wedges. The increased area of turbulent flow around the blade is of interest here, as it can have a negative effect on the energy production of the wind turbine. Infrared thermography is an established method to visualize the transition from laminar to turbulent flow, but the contrast-to-noise ratio (CNR) of the turbulence wedges is often too low to allow a reliable wedge detection with the existing image processing techniques. To facilitate a reliable detection, a model-based algorithm is presented that uses prior knowledge about the wedge-like shape of the premature flow transition. A verification of the algorithm with simulated thermograms and a validation with measured thermograms of a rotor blade from an operating wind turbine are performed. As a result, the proposed algorithm is able to detect turbulence wedges and to determine their area down to a CNR of 2. For turbulence wedges in a recorded thermogram on a wind turbine with CNR as low as 0.2, at least 80% of the area of the turbulence wedges is detected. Thus, the model-based algorithm is proven to be a powerful tool for the detection of turbulence wedges in thermograms of rotor blades of in-service wind turbines and for determining the resulting areas of the additional turbulent flow regions with a low measurement error.


2021 ◽  
Vol 1934 (1) ◽  
pp. 012013
Author(s):  
Marion Cormier ◽  
Pascal Weihing ◽  
Thorsten Lutz
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4045
Author(s):  
David Menéndez Arán ◽  
Ángel Menéndez

A design method was developed for automated, systematic design of hydrokinetic turbine rotor blades. The method coupled a Computational Fluid Dynamics (CFD) solver to estimate the power output of a given turbine with a surrogate-based constrained optimization method. This allowed the characterization of the design space while minimizing the number of analyzed blade geometries and the associated computational effort. An initial blade geometry developed using a lifting line optimization method was selected as the base geometry to generate a turbine blade family by multiplying a series of geometric parameters with corresponding linear functions. A performance database was constructed for the turbine blade family with the CFD solver and used to build the surrogate function. The linear functions were then incorporated into a constrained nonlinear optimization algorithm to solve for the blade geometry with the highest efficiency. A constraint on the minimum pressure on the blade could be set to prevent cavitation inception.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 294
Author(s):  
Dongdong Shao ◽  
Li Huang ◽  
Ruo-Qian Wang ◽  
Carlo Gualtieri ◽  
Alan Cuthbertson

Cage-based aquaculture has been growing rapidly in recent years. In some locations, cage-based aquaculture has resulted in the clustering of large quantities of cages in fish farms located in inland lakes or reservoirs and coastal embayments or fjords, significantly affecting flow and mass transport in the surrounding waters. Existing studies have focused primarily on the macro-scale flow blockage effects of fish cages, and the complex wake flow and associated near-field mass transport in the presence of the cages remain largely unclear. As a first step toward resolving this knowledge gap, this study employed the combined Particle Image Velocimetry and Planar Laser Induced Fluorescence (PIV-PLIF) flow imaging technique to measure turbulence characteristics and associated mass transport in the near wake of a steady current through an aquaculture cage net panel in parametric flume experiments. In the near-wake region, defined as ~3M (mesh size) downstream of the net, the flow turbulence was observed to be highly inhomogeneous and anisotropic in nature. Further downstream, the turbulent intensity followed a power-law decay after the turbulence production region, albeit with a decay exponent much smaller than reported values for analogous grid-generated turbulence. Overall, the presence of the net panel slightly enhanced the lateral spreading of the scalar plume, but the lateral distribution of the scalar concentration, concentration fluctuation and transverse turbulent scalar flux exhibited self-similarity from the near-wake region where the flow was still strongly inhomogeneous. The apparent turbulent diffusivity estimated from the gross plume parameters was found to be in reasonable agreement with the Taylor diffusivity calculated as the product of the transverse velocity fluctuation and integral length scale, even when the plume development was still transitioning from a turbulent-convective to turbulent-diffusive regime. The findings of this study provide references to the near-field scalar transport of fish cages, which has important implications in the assessment of the environmental impacts and environmental carrying capacity of cage-based aquaculture.


Sign in / Sign up

Export Citation Format

Share Document