The molecular orbital theory of chemical valency. V. The structure of water and similar molecules

The theory of molecular and equivalent orbitals developed in previous papers of this series is used to discuss the spatial distribution of lone-pair electrons in molecules such as H 2 O and NH 3 and the part they play in determining the equilibrium configuration. Previous treatments of H 2 O have assumed that the lone pairs are essentially unaltered by molecular formation. It is shown here, on the other hand, that they will be displaced so as to be mainly concentrated on the side of the O-nucleus remote from the hydrogen atoms. An important consequence of this is that the lone-pair electrons will make a contribution to the total dipole moment. Comparison of the experimentally observed moment with an approximate quantitative treatment suggests that, as a result of this, transfer of electrons from the hydrogen atoms to the oxygen does not occur to the extent that has previously been believed. The variation of the spatial distribution of the orbitals of H 2 O with changes of nuclear configuration is examined and it is shown that, in the equilibrium position, the electronic structure can be described approximately by two sets of two equivalent orbitals pointing in nearly tetrahedral directions. The dependence of total energy on bond angle is discussed and it is shown that electrostatic repulsions between the equivalent orbitals are major factors in determining the equilibrium configuration. Similar considerations apply to NH 3 .

This paper aims at giving a general survey of the part played by lone-pair electrons in the range of phenomena commonly classified under the heading of molecular association, with particular emphasis on the liquid state. The position of lone-pair electrons on a molecule and the factors determining their availability for forming intermolecular links are discussed in terms of molecular orbital theory. This is followed by an examination of the way in which these association forces influence the structure of large aggregates of molecules as in liquids. The lines along which a quantitative theory of associated liquids may be developed are indicated.


1956 ◽  
Vol 24 (6) ◽  
pp. 1262-1263 ◽  
Author(s):  
H. F. Hameka ◽  
A. M. Liquori

1970 ◽  
Vol 48 (20) ◽  
pp. 3236-3248 ◽  
Author(s):  
P. J. Krueger ◽  
J. Jan

The fundamental NH and CH stretching vibrations of a number of cyclic imines have been examined in dilute CC14 solution. A trans orientation of the N lone pair orbital and one or more hydrogen atoms on adjacent carbons lowers the relevant vCH ("Bohlmann" bands) and raises vNH reflecting an increase in the s-character of the CH bond(s), consistent with a partial delocalization of the lone pair electrons into the CN bond. Conformations in which this interaction occurs are thermodynamically favored, and the ΔH values for the lone pair axial–equatorial equilibrium in piperidine, pyrrolidine, and indolene are estimated to be 0.4, 0.2, and 0.1 kcal/mole, respectively, in dilute CCl4 solution.The effects of hetero ring size, N-substitution, α-methyl substitution, and the solvent environment are investigated.


1972 ◽  
Vol 25 (9) ◽  
pp. 1843 ◽  
Author(s):  
AS Buchanan ◽  
RC Oppenheim

The catalytic activity of kaolinite before and after acid leaching for the decomposition of n-butane between 669 and 727 K has been compared with that of alumina natural and precipitated, and silica. The catalysis of hydrocarbon reactions on oxide surfaces appears to involve oxygen atoms which may be attached to the solid surface either physically adsorbed as the gas, as part of the lattice, or possibly as attached hydroxyl groups. Dehydrogenation of the hydrocarbon appears to be the first important step, suggesting that adsorption of the reactant involves interaction of the hydrogen atoms with lone pair electrons of surface oxygen atoms.


1998 ◽  
Vol 38 (7) ◽  
pp. 73-79 ◽  
Author(s):  
Hooi-Ling Lee ◽  
Donald DeAngelis ◽  
Hock-Lye Koh

This paper discusses the spatial distribution patterns of the various species of the Unionid mussels as functions of their respective life-cycle characteristics. Computer simulations identify two life-cycle characteristics as major factors governing the abundance of a species, namely the movement range of their fish hosts and the success rate of the parasitic larval glochidia in finding fish hosts. Core mussels species have fish hosts with large movement range to disperse the parasitic larval glochidia to achieve high levels of abundance. Species associated with fish host of limited movement range require high success rate of finding fish host to achieve at least an intermediate level of abundance. Species with low success rate of finding fish hosts coupled with fish hosts having limited movement range exhibit satellite species characteristics, namely rare in numbers and sparse in distributions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Samuel Tetteh ◽  
Albert Ofori

Abstract The M–Ccarbene bond in metal (M) complexes involving the imidazol-2-ylidene (Im) ligand has largely been described using the σ-donor only model with donation of σ electrons from the sp-hybridized orbital of the carbene carbon into vacant orbitals on the metal centre. Analyses of the M–Ccarbene bond in a series of group IA, IIA and IIIA main group metal complexes show that the M-Im interactions are mostly electrostatic with the M–Ccarbene bond distances greater than the sum of the respective covalent radii. Estimation of the binding energies of a series of metal hydride/fluoride/chloride imidazol-2-ylidene complexes revealed that the stability of the M–Ccarbene bond in these complexes is not always commensurate with the σ-only electrostatic model. Further natural bond orbital (NBO) analyses at the DFT/B3LYP level of theory revealed substantial covalency in the M–Ccarbene bond with minor delocalization of electron density from the lone pair electrons on the halide ligands into antibonding molecular orbitals on the Im ligand. Calculation of the thermodynamic stability of the M–Ccarbene bond showed that these interactions are mostly endothermic in the gas phase with reduced entropies giving an overall ΔG > 0.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Nam-Kwang Cho ◽  
Hyun-Jae Na ◽  
Jeeyoung Yoo ◽  
Youn Sang Kim

AbstractBlack-colored (α, γ-phase) CsPbI3 perovskites have a small bandgap and excellent absorption properties in the visible light regime, making them attractive for solar cells. However, their long-term stability in ambient conditions is limited. Here, we demonstrate a strategy to improve structural and electrical long-term stability in γ-CsPbI3 by the use of an ultraviolet-curable polyethylene glycol dimethacrylate (PEGDMA) polymer network. Oxygen lone pair electrons from the PEGDMA are found to capture Cs+ and Pb2+ cations, improving crystal growth of γ-CsPbI3 around PEGDMA. In addition, the PEGDMA polymer network strongly contributes to maintaining the black phase of γ-CsPbI3 for more than 35 days in air, and an optimized perovskite film retained ~90% of its initial electrical properties under red, green, and blue light irradiation.


2002 ◽  
Vol 09 (01) ◽  
pp. 153-158 ◽  
Author(s):  
WEIDONG ZHOU ◽  
D. P. SECCOMBE ◽  
R. Y. L. CHIM ◽  
R. P. TUCKETT

Threshold photoelectron–photoion coincidence (TPEPICO) spectroscopy has been used to investigate the decay dynamics of the valence electronic states of the parent cation of several hydrofluorocarbons (HFC), based on fluorine-substituted ethane, in the energy range 11–25 eV. We present data for CF 3– CHF 2, CF 3– CH 2 F , CF 3– CH 3 and CHF 2– CH 3. The threshold photoelectron spectra (TPES) of these molecules show a common feature of a broad, relatively weak ground state, associated with electron removal from the highest-occupied molecular orbital (HOMO) having mainly C–C σ-bonding character. Adiabatic and vertical ionisation energies for the HOMO of the four HFCs are presented, together with corresponding values from ab initio calculations. For those lower-energy molecular orbitals associated with non-bonding fluorine 2pπ lone pair electrons, these electronic states of the HFC cation decay impulsively by C–F bond fission with considerable release of translational kinetic energy. Appearance energies are presented for formation of the daughter cation formed by such a process (e.g. CF 3– CHF +), together with ab initio energies of the corresponding dissociation channel (e.g. CF 3– CHF + + F ). Values for the translational kinetic energy released are compared with the predictions of a pure-impulsive model.


2012 ◽  
Vol 249 (10) ◽  
pp. 1902-1906 ◽  
Author(s):  
Alexander V. Kolobov ◽  
Paul Fons ◽  
Junji Tominaga

Sign in / Sign up

Export Citation Format

Share Document