The operation of Langmuir probes in electro-negative plasmas

A criterion that must be satisfied by the positive-ion energy distribution at the edge of a sheath surrounding a negative probe is derived for the case when negative ions are present. This criterion is then used to derive the potential outside the sheath region surrounding a spherical probe immersed in an electro-negative plasma. It is found that the potential falls to low values when the ratio of negative ions to electrons exceeds 2. Under these circumstances the positive-ion current collected is the random current across the sheath edge. If, however, the ratio is much less than 2 then the collection of positive ions proceeds as for an electro-positive gas.

1988 ◽  
Vol 117 ◽  
Author(s):  
S G Ingram ◽  
N St J Braithwaite

AbstractA Tonks-Langmuir type model for a one-dimensional low pressure (collisionless) plasma containing at least two species of Maxwellian negative charge carriers is examined. The solutions of this model yield the positive ion energy distribution at the sheath edge without needing to specify the ionization process. This distribution has a width consistent with the potential drop across the plasma, and is shown to satisfy the generalised Bohm criterion for sheath formation. However by assuming a form for the ionization rate in the plasma, the potential profile across the discharge has been calculated. It has been found that for a range of plasma parameters the solution for the potential at which quasineutrality fails becomes triple valued; the physical solution in this regime is identified.Many plasmas used for materials processing contain negative ions. It is important to understand how these ions influence the positive ion energy distribution at the substrate where the processing occurs.This work is also of relevance to the behaviour of Langmuir probes in electronegative plasmas.


The treatment of the positive ions in an electropositive gas discharge as though they had a Maxwellian velocity distribution giving a current to a negative probe equal to the random-ion current, is not consistent with most probe measurements, which on this theory would lead to the untenable conclusion that the positive ions had a temperature about equal to that of the electrons. Theoretical reasons are given for the view that the energy distribution of the positive ions at a sheath edge must comply with a certain criterion, and unless this criterion is fulfilled the probe will not be screened by a sheath but the field of the probe will penetrate into the plasma. The penetration of this field modifies the energy distribution and concentration of the positive ions in the probe neighbourhood until, if the probe voltage is sufficient, the criterion is satisfied and a sheath forms. The probe potential necessary to bring this about has been calculated for idealized high- and low-pressure cases. (It varies between 1 and 4 V). The effect of the penetrating field on the saturation positive-ion current as predicted by the conventional theory has been calculated. At pressures of the order of 1 mm. Hg and above, the saturation current to a negative probe is approximately equal to the random current of positive ions in the gas. At pressures below 0.1 mm. Hg it is considerably greater, being very nearly equal to the value the conventional theory would give if the positive ions had a temperature equal to that of the electrons. Experiments with a small probe in the form of a grid with a collector behind it made it possible to obtain. Langmuir probe characteristics in argon with the electron, ion and secondary emission components separated from one another. Although the smallness of the probe (necessary in order not to disturb the discharge) prevents the rigorous application of the theory because of edge effects, yet the general predictions of the theory are confirmed. In particular, the positive-ion current saturation is seen not to occur until the probe is several volts negative to the space, and the value of this current is low at high pressures and high at low pressures. The retardation part of the positive-ion curve enables the determination of a 'temperature' corresponding to the transverse component of the ion velocities. At 0.004 mm. Hg it is about 0.3 of the electron temperature, and about a tenth the latter at 0.0009 mm. Hg. Observations have also been made upon the anisotropy of the ion and electron-energy distributions, and the probe has been shown to be especially useful in studying departures of the electron-velocity distribution from truly Maxwellian form at high energies. Secondary emission from the platinum collector by photons and metastable particles amounted to about 10% of the saturation positive-ion current.


1936 ◽  
Vol 32 (3) ◽  
pp. 482-485 ◽  
Author(s):  
R. A. Smith

When an electron makes a transition from a continuous state to a bound state, for example in the case of neutralization of a positive ion or formation of a negative ion, its excess energy must be disposed of in some way. It is usually given off as radiation. In the case of neutralization of positive ions the radiation forms the well-known continuous spectrum. No such spectrum due to the direct formation of negative ions has, however, been observed. This process has been fully discussed in a recent paper by Massey and Smith. It is shown that in this case the spectrum would be difficult to observe.


Aerospace ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. 58
Author(s):  
Thibault Hallouin ◽  
Stéphane Mazouffre

The 100 W-class ISCT100-v2 Hall Thruster (HT) has been characterized in terms of far-field plume properties. By means of a Faraday Cup and a Retarding Potential Analyzer, both the ion current density and the ion energy distribution function have been measured over a 180 ∘ circular arc for different operating points. Measurements are compared to far-field plume characterizations performed with higher power Hall thrusters. The ion current density profiles remain unchanged whatever the HT input power, although an asymptotic limit is observed in the core of the plume at high discharge voltages and anode mass flow rates. In like manner, the ion energy distribution functions reveal that most of the beam energy is concentrated in the core of the plume [ − 40 ∘ ; 40 ∘ ] . Moreover, the fraction of low energy ion populations increases at large angles, owing to charge exchange and elastic collisions. Distinct plume regions are identified; they remain similar to the one described for high-power HTs. An efficiency analysis is also performed in terms of current utilization, mass utilization, and voltage utilization. The anode efficiency appears to be essentially affected by a low voltage utilization, the latter originating from the large surface-to-volume ratio inherent to low-power HTs. Experimental results also show that the background pressure clearly affects the plume structure and content.


The ionized regions of the upper atmosphere include, not only neutral atoms and molecules, electrons and positive ions, but also negative ions. Of these, electrons are alone effective in producing reflexion of wireless waves; so that an electron attached to a neutral molecule to form a negative ion is as effectively removed from active participation in these phenomena as one recombined with a positive ion to form a neutral molecule. The decay of electron density at night has been attributed by some authors to recombination with positive.ions and by others to attachment by neutral molecules. The first process is in agreement with the observed law of decay and has the additional advantage of making it easily possible to understand the formation of layers of concentrated ionization; on the other hand, the chance of attachment to a molecule per impact would have to be extremely small for the attachment rate to be negligible, since the number of collisions per second with neutral atoms is very much greater than with positive ions.


The three previous papers of this series (Arnot and Milligan 1936 b ; Arnot 1937 a, b ) contain an account of experimental work which led the senior author to propose a new process of negative-ion formation. This process is the formation of negative ions at metal surfaces by bombardment of the surface with positive ions, the negative ion being formed by the positive ion capturing two electron from the surface. Further work carried out during the past year, which is described in this paper, has revealed a new variation of the above process. In this latter process the impinging positive ion causes an adsorbed atom on the surface to come off as a negative ion. It is believed that this newer process is essentially similar to the process previously reported, the difference being due merely to the transference of excitation energy from the incident positive ion, after its capture of an electron, to the atom adsorbed on the surface. The discovery of this second effect was made independently by Sloane and Press (1938), although they attribute it to a different process.


2019 ◽  
Vol 52 (43) ◽  
pp. 435201 ◽  
Author(s):  
D Kogut ◽  
R Moussaoui ◽  
Ning Ning ◽  
J B Faure ◽  
J M Layet ◽  
...  

2020 ◽  
Author(s):  
Joshua Dreyer ◽  
Erik Vigren ◽  
Michiko Morooka ◽  
Jan-Erik Wahlund ◽  
Stephan Buchert ◽  
...  

<p>We combine RPWS/LP and INMS data from Cassini's Grand Finale orbits into Saturn's lower ionosphere to calculate the effective recombination coefficient α<sub>300</sub> at a reference electron temperature of 300 K. Assuming photochemical equilibrium at altitudes below 2500 km and using an established method to determine the electron production rate, we derive upper limits for α<sub>300</sub> of ∼ 2.5∗10<sup>-7</sup> cm<sup>3 </sup>s<sup>-1</sup>, which suggest that Saturn's ionospheric positive ions are dominated by species with low recombination rate coefficients.<br />An ionosphere dominated by water group ions or complex hydrocarbons, as previously suggested, is incompatible with this result, as these species have recombination rate coefficients > 5∗10<sup>-7</sup> cm<sup>3 </sup>s<sup>-1</sup> at an electron temperature of 300 K. The results do not give constraints on the nature of the negative ions.</p>


The quantal theory of negative ions has now been developed considerably (Massey and Smith 1936; Massey 1938), but on account of difficulties of computing it is usually necessary to assume rather than to prove that a given ion exists, and then to discuss the probability of its formation by different processes. The work described here is a contribution to the experimental side of this subject. It had its origin in a projected attempt to measure the capture cross-section of mercury atoms for electrons, as a verification of Massey and Smith's (1936) then unpublished theory of this process. In considering this it became clear that the experiment would be one of unusual difficulty. Before proceeding with it, therefore, it was decided to verify the existence of Hg - as a stable entity, which is assumed in the quantal theory. this was in doubt since Stille (1933), in some careful experiments, had recently failed to obtain it from the plasma of various forms of discharge through mercury vapour, although it is known that negative ions tend to accumulate in such regions (Emeleus and Sayers 1938). Whilst one of us was repeating his experiments, with modifications which led to essentially the same results and will be describes elsewhere, Arnot and Milligan (1936 b ) reported that they had obtained Hg - by bombardment of metal surfaces with Hg + . A comparison of their work with our own showed only one essential point of difference, namely that the construction of their apparatus did not permit of degassing in situ , a condition satisfied with our tubes. Both for this reason and because of the intrinsic importance of their discovery it was thought desirable to repeat part of their work, with apparatus geometrically similar in electrode construction, but capable of being degassed in a furnace under vacuum. We were again unable to obtain Hg - after the apparatus had been degassed and in operation for a short of that of Hg - was obtained. There were, however, always present several light negative ions, which had the excess energies found by Arnot and Milligan (1936 b ) with Hg - . The conditions under which these were formed led us to suppose that they were produced by bombardment of the metal surfaces by mercury positive ions (Press 1937; Sloane 1937) and not capture of electrons by positive ions of the same species, the process suggested by Arnot and Milligan (1936 b ). The existence of a process of this type, which may be conveniently termed "sputtering" (Sloane and Press 1938), is also implied by some earlier work by J. S. Thompson (1931) which has, so far as we know, never been published in detail. It is, however, impossible to decide definitely ion (e. g. CO - ) when it hits the surface, so long as one is producing the negative ions on a metal surface in a plasma or ionization chamber. One cannot overlook the possibility of the negative ion being formed from its own positive ion, since the latter may be present in the plasma or ionization chamber, and CO + , for example, was in fact shown in our work to be there from the positive-ion mass spectra, although in quantity only a fraction of 1% of Hg + . An unambiguous decision on this point can only be reached by first isolating a particular positive ion by a mass spectrograph, then bombarding a surface by this in a high vacuum , and finally making a mass spectrographic and energy distribution analysis of the resultant negative ions. We have built a double mass spectrograph for this purpose and find that negative ions of one kind possessing energies in excess of that imparted to them by the accelerating fields can be produced by bombardment with positive ions of another kind (Sloane and Press 1938). An account of the experiments with the single mass spectrograph is given in 1. the experiments with the double mass spectrograph are described in 2.


1998 ◽  
Vol 60 (1) ◽  
pp. 81-93 ◽  
Author(s):  
H. AMEMIYA ◽  
B. M. ANNARATONE ◽  
J. E. ALLEN

The double sheath formed by thermal electrons and negative ions in a plasma and electrons emitted from an electrode is investigated. The ion energy at the sheath edge and the electric field at the electrode surface are calculated for several values of the ratio of negative-ion density to electron density. The maximum beam density above which a virtual cathode appears is given. The relation to the Langmuir limit is shown. The numerical results for the electric potential, the electric field and the space charge density are presented. The floating potential is calculated from the current balance of all components.


Sign in / Sign up

Export Citation Format

Share Document