Kinetics of elastic twinning in calcite

An investigation of the effect of localized transient stresses on calcite is described. It is shown that twinning may or may not occur, depending on the duration of the stress pulse, the temperature and a factor related to the length of twin which may be formed. An hypothesis is suggested to explain the results and, from it, the velocity of propagation of twin lamellae is calculated in the temperature range from 20 to 300 °C. An activation energy for twin propagation is also calculated. Direct observation of the twinning process using a high-speed camera has confirmed the above hypothesis and results and has shown that the velocity of propagation of twin lamellae in calcite is not very dependent on the applied shear stress.

RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 48580-48588 ◽  
Author(s):  
Wanggang Zhang ◽  
Yiming Liu ◽  
Diaoyu Zhou ◽  
Jing Wen ◽  
Liuwei Zheng ◽  
...  

Heating treatment leads to the diffusion of Au into TiO2 nanotube arrays and the formation of Au nanocrystals. The activation energy for the Au diffusion on the surface of the TiO2 nanotubes in the temperature range of 400 to 500 °C is 67.2 kJ mol−1.


BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1958-1979
Author(s):  
Bingtao Hu ◽  
Zhaolin Gu ◽  
Junwei Su ◽  
Zhijian Li

Wheat straw produced annually in the Shaanxi Guanzhong region is a potential biomass feedstock for the production of transportation fuels and specialized chemicals through combustion, pyrolysis, or gasification. In this work, the pyrolytic characteristics, evolved gas products, and kinetics of Guanzhong wheat straw and its components were first investigated with a thermogravimetry-Fourier infrared spectroscopy (TG-FTIR) system. A comparative kinetic study was conducted using different model-free methods of Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS), Kissinger, and the Coats-Redfern methods. The main pyrolysis products identified by FTIR include H2O, CH4, CO2, and CO as well as aromatics, acids, ketones, and aldehydes. Kinetic results showed that the pyrolytic apparent activation energy of the straw is approximately 200 kJ/mol obtained via FWO and KAS methods at the conversion range of 0.4 to 0.75, which was 30 kJ/mol higher than the value 171.1 kJ/mol obtained by the Kissinger method. The apparent activation energy of cellulose in its main pyrolysis region is 135.5 kJ/mol and is about three times larger than that of hemicellulose (49.5 kJ/mol). The apparent activation energy of lignin at the temperature range of 45 to 116 °C was 34.5 kJ/mol, while that value at the temperature range of 120 to 252 °C was 6.64 kJ/mol.


1962 ◽  
Vol 40 (4) ◽  
pp. 686-691 ◽  
Author(s):  
E. M. Levy ◽  
C. A. Winkler

A comparison has been made of five methods for terminating the reaction of active nitrogen with ethylene in the temperature range 295° to 673° K. These were based on deactivating the active nitrogen by low-temperature trapping, by addition of nitric oxide, and by passing it over copper oxide or cobalt catalysts. With the nitric oxide and cobalt catalyst techniques, which appeared to be the most reliable of those used, an activation energy of 400 ± 200 cal/mole, with a P factor of about 10−5, have been determined for the reaction.


Measurements have been made of the velocity of propagation and the absorption of ultrasonic waves in liquid triethylamine over the temperature range 25 to 70° C and at frequencies of approximately 23, 66, 107, 148 and 192 Mc/s. The absorption results demonstrate the existence of a relaxation process which is attributed to the perturbation by the sound wave of an equilibrium between rotational isomers. The activation energy barrier and the difference in energy between the states are evaluated from an analysis of the results. The calculated dispersion of velocity is less than 1%. Values of the specific heat of triethvlamine are required in the analysis and are given in the paper for the temperature range 25 to 60°C. The results are discussed in the light of other measurements concerned with rotational isomers.


1962 ◽  
Vol 15 (2) ◽  
pp. 181 ◽  
Author(s):  
JJ Batten

The rate of dissolution of silver gauze in nitric acid at various concentrations and temperatures was measured in a static system. The solution process was measured by the weight of silver dissolved in various time intervals. In general, induction periods were observed, but after this period the dissolution proceeded with an appreciable velocity. To examine the influence of acid concentration and temperature on the kinetics of the reaction, the duration of the induction period, the rate of dissolution during this period, and the subsequent maximum rate were taken as kinetic parameters of the reaction. The induction rate was found to be highly dependent on the initial acid concentration (approx. seventh power), whereas over most of the concentration range accessible to study, the maximum rate was proportional to the square of the concentration. It was also observed that increase in temperature sharply increases the induction rate, but has little effect upon the subsequent maximum rate over most of the temperature range studied. The activation energy of the induction rate was greater than 20 kcal/mole, whereas that of the maximum rate was about 4 kcal/mole over most of the temperature range studied. This difference in the activation energy during and after the induction period is explained by a shift in the mechanism controlling the rate of the process from a chemical reaction at the surface to a diffusion process.


2013 ◽  
Vol 748 ◽  
pp. 295-298
Author(s):  
Shu Qiong Liao ◽  
Xiao Yu Peng ◽  
Xue Wang Zhang ◽  
Ke Lin Huang ◽  
Ben Wang ◽  
...  

Micro-molecular dextran was prepared in sub-critical water and sub-critical Water/CO2by hydrolysis of dextran20. The obtained products were mainly characterized by GPC. The kinetics of hydrolysis of dextran20 has been studied in the temperature range of 423.15K-463.15K. It was found that the level of dextran20 hydrolysis in sub-critical water and sub-critical water/CO2was first level kinetics equation. The activation energy was also calculated. The results demonstrated that the molecular weight of micro-molecular dextran could be controlled.


2006 ◽  
Vol 129 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Hamid Ullah ◽  
M. A. Irfan ◽  
V. Prakash

In the present paper the applicability of state and rate dependent friction laws in describing the phenomena of high speed slip at metal-on-metal interfaces is investigated. For the purpose of model validation, results of plate-impact pressure-shear friction experiments were conducted by Irfan in 1998 and Irfan and Prakash in 2000 using a Ti6Al4V and Carpenter Hampden tool-steel tribo pair are employed. In these experiments high normal pressures (1-3GPa) and slip speeds of approximately 50m∕s were attained during the high-speed slip event. Moreover, these experiments were designed to investigate the evolution of friction stress in response to step changes in normal pressure and also in the applied shear stress during the high-speed slip event. A step drop in normal pressure is observed to result in an exponential decay of the friction stress to a new steady-state characteristic of the current normal pressure and the current slip velocity. A step drop in applied shear stress is observed to lead to an initial drop in friction stress, which later increases toward a new steady-state friction stress level. In response to the step drop in applied shear stress the slip velocity initially increases and then decreases to a new steady-state level consistent with the new friction stress level. A modified rate and state dependent friction model that employs both velocity and normal stress dependent state variables is used to simulate the experimental results. A good correlation is found between the experimental results and the predictions of the proposed state and rate dependent friction model.


Membranes ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 68
Author(s):  
Mads Koustrup Jørgensen ◽  
Kristian Boe Eriksen ◽  
Morten Lykkegaard Christensen

A methodology was developed for direct observation and analysis of particle movements near a microfiltration membrane. A high speed camera (1196 frames per second) was mounted on a microscope to record a hollow fiber membrane in a filtration cell with a transparent wall. Filtrations were conducted at varying pressure and crossflow velocities using synthetic core–shell particles (diameter 1.6 μm) of no and high negative surface charge. MATLAB scripts were developed to track the particle positions and calculate velocities of particle movements across and towards the membrane surface. Data showed that the velocity of particles along the membrane increases with distance from the membrane surface which correlates well with a fluid velocity profile obtained from CFD modelling. Particle track and trace was used to calculate the particle count profiles towards the membrane and document a higher concentration of particles near the membrane surface than in the bulk. Calculation of particle velocity towards and away from the membrane showed a region within 3–80 μm from the membrane surface with particle velocities higher than expected from the velocity of water through the membrane, thus the permeation drag underpredicts the actual velocity of particles towards the membrane. Near the membrane, particle velocities shift direction and move away. This is not described in classical filtration theory, but it has been speculated that this is an effect of particle rotation or due to membrane vibration or change in flow pattern close to the membrane.


RSC Advances ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 6542-6547 ◽  
Author(s):  
Daniel Bouëxière ◽  
Karin Popa ◽  
Olaf Walter ◽  
Marco Cologna

Results on the kinetics of PuO2 nanocrystals are presented in the temperature range below 1100 °C showing the activation energy for the particle growth is ∼350 kJ mol−1. Particle growth proceeds from the nano- to the micrometer scale.


Sign in / Sign up

Export Citation Format

Share Document