scholarly journals Effect of surface elasticity on an interface crack in plane deformations

Author(s):  
C. I. Kim ◽  
P. Schiavone ◽  
C.-Q. Ru

We consider the effect of surface elasticity on an interface crack between two dissimilar linearly elastic isotropic homogeneous materials undergoing plane deformations. The bi-material is subjected to either remote tension (mode-I) or in-plane shear (mode-II) with the faces of the (interface) crack assumed to be traction-free. We incorporate surface mechanics into the model of deformation by employing a version of the continuum-based surface/interface theory of Gurtin & Murdoch. Using complex variable methods, we obtain a semi-analytical solution valid throughout the entire domain of interest (including at the crack tips) by reducing the problem to a system of coupled Cauchy singular integro-differential equations, which is solved numerically using Chebychev polynomials and a collocation method. It is shown that, among other interesting phenomena, our model predicts finite stress at the (sharp) crack tips and the corresponding stress field to be size-dependent. In particular, we note that, in contrast to the results from linear elastic fracture mechanics, when the bi-material is subjected to uniform far-field stresses (either tension or in-plane shear), the incorporation of surface effects effectively eliminates the oscillatory behaviour of the solution so that the resulting stress fields no longer suffer from oscillatory singularities at the crack tips.

2015 ◽  
Vol 82 (2) ◽  
Author(s):  
Xu Wang ◽  
Peter Schiavone

We undertake an analytical study of the interaction of an edge dislocation with a finite crack whose faces are assumed to have separate surface elasticity. The surface elasticity on the faces of the crack is described by a version of the continuum-based surface/interface theory of Gurtin and Murdoch. By using the Green's function method, we obtain a complete exact solution by reducing the problem to three Cauchy singular integrodifferential equations of the first-order, which are solved by means of Chebyshev polynomials and a collocation method. The correctness of the solution is rigorously verified by comparison with existing analytical solutions. Our analysis shows that the stresses and the image force acting on the edge dislocation are size-dependent and that the stresses exhibit both the logarithmic and square root singularities at the crack tips when the surface tension is neglected.


2016 ◽  
Vol 22 (2) ◽  
pp. 131-143 ◽  
Author(s):  
Xu Wang ◽  
Hui Fan

In the present analytical study, we consider the problem of a nanocrack with surface elasticity interacting with a screw dislocation. The surface elasticity is incorporated by using the continuum-based surface/interface model of Gurtin and Murdoch. By considering both distributed screw dislocations and line forces on the crack, we reduce the interaction problem to two decoupled first-order Cauchy singular integro-differential equations which can be numerically solved by the collocation method. The analysis indicates that if the dislocation is on the real axis where the crack is located, the stresses at the crack tips only exhibit the weak logarithmic singularity; if the dislocation is not on the real axis, however, the stresses exhibit both the weak logarithmic and the strong square-root singularities. Our result suggests that the surface effects of the crack will make the fracture more ductile. The criterion for the spontaneous generation of dislocations at the crack tip is proposed.


2005 ◽  
Vol 12 (S1) ◽  
pp. 125-128 ◽  
Author(s):  
Qiu-hua Rao ◽  
Zhen-feng Liao

1988 ◽  
Vol 55 (4) ◽  
pp. 814-817 ◽  
Author(s):  
Peter M. Anderson

Conditions are discussed for which the contact zone at the tip of a two-dimensional interface crack between anisotropic elastic materials is small. For such “small scale contact” conditions combined with small scale yielding conditions, a stress concentration vector uniquely characterizes the near tip field, and may be used as a crack growth parameter. Representative calculations for an interface crack on a representative Cu grain boundary show small contact conditions to prevail, except possibly under large shearing loads.


2020 ◽  
Vol 897 ◽  
pp. 73-77
Author(s):  
Toan Minh Le ◽  
Tinh Quoc Bui ◽  
Jintara Lawongkerd ◽  
Suchart Limkatanyu ◽  
Jaroon Rungamornrat

In this paper, a frictionless contact of a rigid flat-ended indentor on a linear elastic half plane is investigated by taking the influence of surface and couple stresses into account. The surface elasticity and couple stress theories are utilized to form a mathematical model. The Green’s function method together with the equilibrium condition of the indentor is employed to formulate the key equations governing the contact pressure. A collocation technique and a set of available fundamental solutions of a half plane under the surface loading are adopted to determine the unknown contact pressure. Results from a numerical study reveal that the presence of both surface and couple stresses significantly alters the distribution of the contact pressure from that predicted by the classical linear elasticity, and the size-dependent characteristics of predicted solutions are obviously observed when the contact width is comparable to the internal length scales of the surface and bulk materials.


Sign in / Sign up

Export Citation Format

Share Document