scholarly journals Symmetry and reduction in collectives: low-dimensional cyclic pursuit

Author(s):  
Kevin S. Galloway ◽  
Eric W. Justh ◽  
P. S. Krishnaprasad

We investigate low-dimensional examples of cyclic pursuit in a collective, wherein each agent employs a constant bearing (CB) steering law relative to exactly one other agent. For the case of three agents in the plane, we characterize relative equilibria and pure shape equilibria of associated closed-loop dynamics. Re-scaling time yields a reduction of phase space to two dimensions and effective tools for stability analysis. Study of bifurcation of a family of collinear equilibria dependent on a single CB control parameter reveals the presence of a rich collection of trajectories that are periodic in shape and undergo precession in physical space. For collectives in three dimensions, with an appropriate notion of CB pursuit strategy and corresponding steering law, the two-agent case proves to be explicitly integrable. These results suggest control schemes for small teams of mobile robotic agents engaged in area coverage tasks such as search and rescue, and raise interesting possibilities for behaviour in biological contexts.

Author(s):  
Kevin S. Galloway ◽  
Eric W. Justh ◽  
P. S. Krishnaprasad

We specify and analyse models that capture the geometry of purposeful motion of a collective of mobile agents, with a focus on planar motion, dyadic strategies and attention graphs which are static, directed and cyclic. Strategies are formulated as constraints on joint shape space and are implemented through feedback laws for the actions of individual agents, here modelled as self-steering particles. By reduction to a labelled shape space (using a redundant parametrization to account for cycle closure constraints) and a further reduction through time rescaling, we characterize various special solutions (relative equilibria and pure shape equilibria) for cyclic pursuit with a constant bearing (CB) strategy. This is accomplished by first proving convergence of the (nonlinear) dynamics to an invariant manifold (the CB pursuit manifold), and then analysing the closed-loop dynamics restricted to the invariant manifold. For illustration, we sketch some low-dimensional examples. This formulation—involving strategies, attention graphs and sensor-driven steering laws—and the resulting templates of collective motion, are part of a broader programme to interpret the mechanisms underlying biological collective motion.


2014 ◽  
Vol 24 (10) ◽  
pp. 2009-2041 ◽  
Author(s):  
Andrea Cangiani ◽  
Emmanuil H. Georgoulis ◽  
Paul Houston

An hp-version interior penalty discontinuous Galerkin method (DGFEM) for the numerical solution of second-order elliptic partial differential equations on general computational meshes consisting of polygonal/polyhedral elements is presented and analyzed. Utilizing a bounding box concept, the method employs elemental polynomial bases of total degree p (𝒫p-basis) defined on the physical space, without the need to map from a given reference or canonical frame. This, together with a new specific choice of the interior penalty parameter which allows for face-degeneration, ensures that optimal a priori bounds may be established, for general meshes including polygonal elements with degenerating edges in two dimensions and polyhedral elements with degenerating faces and/or edges in three dimensions. Numerical experiments highlighting the performance of the proposed method are presented. Moreover, the competitiveness of the p-version DGFEM employing a 𝒫p-basis in comparison to the conforming p-version finite element method on tensor-product elements is studied numerically for a simple test problem.


Data ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Domingo Villavicencio-Aguilar ◽  
Edgardo René Chacón-Andrade ◽  
Maria Fernanda Durón-Ramos

Happiness-oriented people are vital in every society; this is a construct formed by three different types of happiness: pleasure, meaning, and engagement, and it is considered as an indicator of mental health. This study aims to provide data on the levels of orientation to happiness in higher-education teachers and students. The present paper contains data about the perception of this positive aspect in two Latin American countries, Mexico and El Salvador. Structure instruments to measure the orientation to happiness were administrated to 397 teachers and 260 students. This data descriptor presents descriptive statistics (mean, standard deviation), internal consistency (Cronbach’s alpha), and differences (Student’s t-test) presented by country, population (teacher/student), and gender of their orientation to happiness and its three dimensions: meaning, pleasure, and engagement. Stepwise-multiple-regression-analysis results are also presented. Results indicated that participants from both countries reported medium–high levels of meaning and engagement happiness; teachers reported higher levels than those of students in these two dimensions. Happiness resulting from pleasure activities was the least reported in general. Males and females presented very similar levels of orientation to happiness. Only the population (teacher/student) showed a predictive relationship with orientation to happiness; however, the model explained a small portion of variance in this variable, which indicated that other factors are more critical when promoting orientation to happiness in higher-education institutions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2012 ◽  
Vol 696 ◽  
pp. 228-262 ◽  
Author(s):  
A. Kourmatzis ◽  
J. S. Shrimpton

AbstractThe fundamental mechanisms responsible for the creation of electrohydrodynamically driven roll structures in free electroconvection between two plates are analysed with reference to traditional Rayleigh–Bénard convection (RBC). Previously available knowledge limited to two dimensions is extended to three-dimensions, and a wide range of electric Reynolds numbers is analysed, extending into a fully inherently three-dimensional turbulent regime. Results reveal that structures appearing in three-dimensional electrohydrodynamics (EHD) are similar to those observed for RBC, and while two-dimensional EHD results bear some similarities with the three-dimensional results there are distinct differences. Analysis of two-point correlations and integral length scales show that full three-dimensional electroconvection is more chaotic than in two dimensions and this is also noted by qualitatively observing the roll structures that arise for both low (${\mathit{Re}}_{E} = 1$) and high electric Reynolds numbers (up to ${\mathit{Re}}_{E} = 120$). Furthermore, calculations of mean profiles and second-order moments along with energy budgets and spectra have examined the validity of neglecting the fluctuating electric field ${ E}_{i}^{\ensuremath{\prime} } $ in the Reynolds-averaged EHD equations and provide insight into the generation and transport mechanisms of turbulent EHD. Spectral and spatial data clearly indicate how fluctuating energy is transferred from electrical to hydrodynamic forms, on moving through the domain away from the charging electrode. It is shown that ${ E}_{i}^{\ensuremath{\prime} } $ is not negligible close to the walls and terms acting as sources and sinks in the turbulent kinetic energy, turbulent scalar flux and turbulent scalar variance equations are examined. Profiles of hydrodynamic terms in the budgets resemble those in the literature for RBC; however there are terms specific to EHD that are significant, indicating that the transfer of energy in EHD is also attributed to further electrodynamic terms and a strong coupling exists between the charge flux and variance, due to the ionic drift term.


Author(s):  
Guy Bouchitté ◽  
Ornella Mattei ◽  
Graeme W. Milton ◽  
Pierre Seppecher

In many applications of structural engineering, the following question arises: given a set of forces f 1 ,  f 2 , …,  f N applied at prescribed points x 1 ,  x 2 , …,  x N , under what constraints on the forces does there exist a truss structure (or wire web) with all elements under tension that supports these forces? Here we provide answer to such a question for any configuration of the terminal points x 1 ,  x 2 , …,  x N in the two- and three-dimensional cases. Specifically, the existence of a web is guaranteed by a necessary and sufficient condition on the loading which corresponds to a finite dimensional linear programming problem. In two dimensions, we show that any such web can be replaced by one in which there are at most P elementary loops, where elementary means that the loop cannot be subdivided into subloops, and where P is the number of forces f 1 ,  f 2 , …,  f N applied at points strictly within the convex hull of x 1 ,  x 2 , …,  x N . In three dimensions, we show that, by slightly perturbing f 1 ,  f 2 , …,  f N , there exists a uniloadable web supporting this loading. Uniloadable means it supports this loading and all positive multiples of it, but not any other loading. Uniloadable webs provide a mechanism for channelling stress in desired ways.


Author(s):  
DANIEL A. SPIELMAN ◽  
SHANG-HUA TENG ◽  
ALPER ÜNGÖR

We present a parallel Delaunay refinement algorithm for generating well-shaped meshes in both two and three dimensions. Like its sequential counterparts, the parallel algorithm iteratively improves the quality of a mesh by inserting new points, the Steiner points, into the input domain while maintaining the Delaunay triangulation. The Steiner points are carefully chosen from a set of candidates that includes the circumcenters of poorly-shaped triangular elements. We introduce a notion of independence among possible Steiner points that can be inserted simultaneously during Delaunay refinements and show that such a set of independent points can be constructed efficiently and that the number of parallel iterations is O( log 2Δ), where Δ is the spread of the input — the ratio of the longest to the shortest pairwise distances among input features. In addition, we show that the parallel insertion of these set of points can be realized by sequential Delaunay refinement algorithms such as by Ruppert's algorithm in two dimensions and Shewchuk's algorithm in three dimensions. Therefore, our parallel Delaunay refinement algorithm provides the same shape quality and mesh-size guarantees as these sequential algorithms. For generating quasi-uniform meshes, such as those produced by Chew's algorithms, the number of parallel iterations is in fact O( log Δ). To the best of our knowledge, our algorithm is the first provably polylog(Δ) time parallel Delaunay-refinement algorithm that generates well-shaped meshes of size within a constant factor of the best possible.


Author(s):  
Gregory Falkovich

This short note is written to call attention to an analytic approach to the interaction of developed turbulence with mean flows of simple geometry (jets and vortices). It is instructive to compare cases in two and three dimensions and see why the former are solvable and the latter are not (yet). We present the analytical solutions for two-dimensional mean flows generated by an inverse turbulent cascade on a sphere and in planar domains of different aspect ratios. These solutions are obtained in the limit of small friction when the flow is strong while turbulence can be considered weak and treated perturbatively. I then discuss when these simple solutions can be realized and when more complicated flows may appear instead. The next step of describing turbulence statistics inside a flow and directions of possible future progress are briefly discussed at the end.


Author(s):  
Daniel Guyot ◽  
Christian Oliver Paschereit

Active instability control was applied to an atmospheric swirl-stabilized premixed combustor using open loop and closed loop control schemes. Actuation was realised by two on-off valves allowing for symmetric and asymmetric modulation of the premix fuel flow while maintaining constant time averaged overall fuel mass flow. Pressure and heat release fluctuations in the combustor as well as NOx, CO and CO2 emissions in the exhaust were recorded. In the open loop circuit the heat release response of the flame was first investigated during stable combustion. For symmetric fuel modulation the dominant frequency in the heat release response was the modulation frequency, while for asymmetric modulation it was its first harmonic. In stable open loop control a reduction of NOx emissions due to fuel modulation of up to 19% was recorded. In the closed loop mode phase-shift control was applied while triggering the valves at the dominant oscillation frequency as well as at its second subharmonic. Both, open and closed loop control schemes were able to successfully control a low-frequency combustion instability, while showing only a small increase in NOx emissions compared to, for example, secondary fuel modulation. Using premixed open loop fuel modulation, attenuation was best when modulating the fuel at frequencies different from the dominant instability frequency and its subharmonic. The performance of asymmetric fuel modulation was generally slightly better than for symmetric modulation in terms of suppression levels as well as emissions. Suppression of the instability’s pressure rms level of up to 15.7 dB was recorded.


2010 ◽  
Vol 67 (3) ◽  
pp. 694-712 ◽  
Author(s):  
Ji-Young Han ◽  
Jong-Jin Baik

Abstract Convectively forced mesoscale flows in a shear flow with a critical level are theoretically investigated by obtaining analytic solutions for a hydrostatic, nonrotating, inviscid, Boussinesq airflow system. The response to surface pulse heating shows that near the center of the moving mode, the magnitude of the vertical velocity becomes constant after some time, whereas the magnitudes of the vertical displacement and perturbation horizontal velocity increase linearly with time. It is confirmed from the solutions obtained in present and previous studies that this result is valid regardless of the basic-state wind profile and dimension. The response to 3D finite-depth steady heating representing latent heating due to cumulus convection shows that, unlike in two dimensions, a low-level updraft that is necessary to sustain deep convection always occurs at the heating center regardless of the intensity of vertical wind shear and the heating depth. For deep heating across a critical level, little change occurs in the perturbation field below the critical level, although the heating top height increases. This is because downward-propagating gravity waves induced by the heating above, but not near, the critical level can hardly affect the flow response field below the critical level. When the basic-state wind backs with height, the vertex of V-shaped perturbations above the heating top points to a direction rotated a little clockwise from the basic-state wind direction. This is because the V-shaped perturbations above the heating top is induced by upward-propagating gravity waves that have passed through the layer below where the basic-state wind direction is clockwise relative to that above.


Sign in / Sign up

Export Citation Format

Share Document