scholarly journals Is a time symmetric interpretation of quantum theory possible without retrocausality?

Author(s):  
Matthew S. Leifer ◽  
Matthew F. Pusey

Huw Price has proposed an argument that suggests a time symmetric ontology for quantum theory must necessarily be retrocausal, i.e. it must involve influences that travel backwards in time. One of Price's assumptions is that the quantum state is a state of reality. However, one of the reasons for exploring retrocausality is that it offers the potential for evading the consequences of no-go theorems, including recent proofs of the reality of the quantum state. Here, we show that this assumption can be replaced by a different assumption, called λ -mediation, that plausibly holds independently of the status of the quantum state. We also reformulate the other assumptions behind the argument to place them in a more general framework and pin down the notion of time symmetry involved more precisely. We show that our assumptions imply a timelike analogue of Bell's local causality criterion and, in doing so, give a new interpretation of timelike violations of Bell inequalities. Namely, they show the impossibility of a (non-retrocausal) time symmetric ontology.

Author(s):  
Giacomo Mauro D’Ariano

Causality has never gained the status of a ‘law’ or ‘principle’ in physics. Some recent literature has even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of the reversibility of the laws of physics, based either on the determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such a notion of causality appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establishing a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The notion of causality is logically completely independent of the misidentified concept of ‘determinism’, and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude by arguing that causality naturally establishes an arrow of time. This implies that the scenario of the ‘block Universe’ and the connected ‘past hypothesis’ are incompatible with causality, and thus with quantum theory: they are both doomed to remain mere interpretations and, as such, are not falsifiable, similar to the hypothesis of ‘super-determinism’. This article is part of a discussion meeting issue ‘Foundations of quantum mechanics and their impact on contemporary society’.


2016 ◽  
pp. 4039-4042
Author(s):  
Viliam Malcher

The interpretation problems of quantum theory are considered. In the formalism of quantum theory the possible states of a system are described by a state vector. The state vector, which will be represented as |ψ> in Dirac notation, is the most general form of the quantum mechanical description. The central problem of the interpretation of quantum theory is to explain the physical significance of the |ψ>. In this paper we have shown that one of the best way to make of interpretation of wave function is to take the wave function as an operator.


Author(s):  
Richard Healey

We can use quantum theory to explain an enormous variety of phenomena by showing why they were to be expected and what they depend on. These explanations of probabilistic phenomena involve applications of the Born rule: to accept quantum theory is to let relevant Born probabilities guide one’s credences about presently inaccessible events. We use quantum theory to explain a probabilistic phenomenon by showing how its probabilities follow from a correct application of the Born rule, thereby exhibiting the phenomenon’s dependence on the quantum state to be assigned in circumstances of that type. This is not a causal explanation since a probabilistic phenomenon is not constituted by events that may manifest it: but each of those events does depend causally on events that actually occur in those circumstances. Born probabilities are objective and sui generis, but not all Born probabilities are chances.


Author(s):  
Richard Healey

Often a pair of quantum systems may be represented mathematically (by a vector) in a way each system alone cannot: the mathematical representation of the pair is said to be non-separable: Schrödinger called this feature of quantum theory entanglement. It would reflect a physical relation between a pair of systems only if a system’s mathematical representation were to describe its physical condition. Einstein and colleagues used an entangled state to argue that its quantum state does not completely describe the physical condition of a system to which it is assigned. A single physical system may be assigned a non-separable quantum state, as may a large number of systems, including electrons, photons, and ions. The GHZ state is an example of an entangled polarization state that may be assigned to three photons.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 598-602
Author(s):  
Elemér Elad Rosinger

Abstract It is shown by using a rather elementary argument in Mathematical Logic that if indeed, quantum theory does violate the famous Bell Inequalities, then quantum theory must inevitably also violate all valid mathematical statements, and in particular, such basic algebraic relations like 0 = 0, 1 = 1, 2 = 2, 3 = 3, … and so on … An interest in that result is due to the following three alternatives which it imposes upon both Physics and Mathematics: Quantum Theory is inconsistent. Quantum Theory together with Mathematics are inconsistent. Mathematics is inconsistent. In this regard one should recall that, up until now, it is not known whether Mathematics is indeed consistent.


Author(s):  
Maria Nadia Postorino ◽  
Luca Mantecchini ◽  
Filippo Paganelli

Transport systems are important pollution sources, mainly in terms of greenhouse gases, noise and land consumption. To mitigate the problem and safeguard airport development at the same time, the involved stakeholders are fixing goals, priorities and duties in order to promote the sustainable development of the air transport industry at global level and the wellness of local communities as well. It is desirable to estimate airport noise and carbon impacts in order to suitably manage them and identify strategies in line with the concept of green economy. In this chapter, a general framework to identify optimal procedures and methods to evaluate the effectiveness of policies addressed to reduce airport impacts on the airport surroundings is proposed. The case study of the airport of Bologna is presented as an example of Transport Company that effectively operates to minimize its noise and carbon impacts. According to the proposed general framework, impacts and estimated costs to achieve the status of green company have been computed.


Author(s):  
Alisa Bokulich

Traditionally \1 is used to stand for both the mathematical wavefunction (the representation) and the quantum state (thing in the world). This elision has been elevated to a metaphysical thesis by advocates of wavefunction realism. The aim of Chapter 10 is to challenge the hegemony of the wavefunction by calling attention to a littleknown formulation of quantum theory that does not make use of the wavefunction in representing the quantum state. This approach, called Lagrangian quantum hydrodynamics (LQH), is a full alternative formulation, not an approximation scheme. A consideration of alternative formalisms is essential for any realist project that attempts to read the ontology of a theory off the mathematical formalism. The chapter shows that LQH falsifies the claim that one must represent the many-body quantum state as living in 3n-dimensional configuration space. When exploring quantum realism, regaining sight of the proverbial forest of quantum representations beyond the \1 is just the beginning.


Sign in / Sign up

Export Citation Format

Share Document