The coding of sound pressure and frequency in cochlear hair cells of the terrapin

1978 ◽  
Vol 203 (1151) ◽  
pp. 209-218 ◽  

Intracellular recordings have been made from single hair cells in the cochlea of the terrapin, and the site of recording has been verified by injection of a fluorescent dye through the recording electrode. A hair cell gives periodic voltage responses graded with the intensity and frequency of the sound stimulus, and produces the largest response at its characteristic frequency. When small current steps are injected through the recording electrode, the voltage response of the cell exhibits damped oscillations at its characteristic frequency. The results are consistent with the idea that the cochlear frequency selectivity arises in two stages and it is suggested that the second stage resides within the hair cell itself.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Z. Jason Qian ◽  
Anthony J. Ricci

AbstractCurrent clinical interest lies in the relationship between hearing loss and cognitive impairment. Previous work demonstrated that noise exposure, a common cause of sensorineural hearing loss (SNHL), leads to cognitive impairments in mice. However, in noise-induced models, it is difficult to distinguish the effects of noise trauma from subsequent SNHL on central processes. Here, we use cochlear hair cell ablation to isolate the effects of SNHL. Cochlear hair cells were conditionally and selectively ablated in mature, transgenic mice where the human diphtheria toxin (DT) receptor was expressed behind the hair-cell specific Pou4f3 promoter. Due to higher Pou4f3 expression in cochlear hair cells than vestibular hair cells, administration of a low dose of DT caused profound SNHL without vestibular dysfunction and had no effect on wild-type (WT) littermates. Spatial learning/memory was assayed using an automated radial 8-arm maze (RAM), where mice were trained to find food rewards over a 14-day period. The number of working memory errors (WME) and reference memory errors (RME) per training day were recorded. All animals were injected with DT during P30–60 and underwent the RAM assay during P90–120. SNHL animals committed more WME and RME than WT animals, demonstrating that isolated SNHL affected cognitive function. Duration of SNHL (60 versus 90 days post DT injection) had no effect on RAM performance. However, younger age of acquired SNHL (DT on P30 versus P60) was associated with fewer WME. This describes the previously undocumented effect of isolated SNHL on cognitive processes that do not directly rely on auditory sensory input.


Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 557-566 ◽  
Author(s):  
T. Self ◽  
M. Mahony ◽  
J. Fleming ◽  
J. Walsh ◽  
S.D. Brown ◽  
...  

The mouse shaker-1 locus, Myo7a, encodes myosin VIIA and mutations in the orthologous gene in humans cause Usher syndrome type 1B or non-syndromic deafness. Myo7a is expressed very early in sensory hair cell development in the inner ear. We describe the effects of three mutations on cochlear hair cell development and function. In the Myo7a816SB and Myo7a6J mutants, stereocilia grow and form rows of graded heights as normal, but the bundles become progressively more disorganised. Most of these mutants show no gross electrophysiological responses, but some did show evidence of hair cell depolarisation despite the disorganisation of their bundles. In contrast, the original shaker-1 mutants, Myo7ash1, had normal early development of stereocilia bundles, but still showed abnormal cochlear responses. These findings suggest that myosin VIIA is required for normal stereocilia bundle organisation and has a role in the function of cochlear hair cells.


2020 ◽  
Vol 117 (36) ◽  
pp. 22225-22236
Author(s):  
Xiao-Jun Li ◽  
Angelika Doetzlhofer

Mechano-sensory hair cells within the inner ear cochlea are essential for the detection of sound. In mammals, cochlear hair cells are only produced during development and their loss, due to disease or trauma, is a leading cause of deafness. In the immature cochlea, prior to the onset of hearing, hair cell loss stimulates neighboring supporting cells to act as hair cell progenitors and produce new hair cells. However, for reasons unknown, such regenerative capacity (plasticity) is lost once supporting cells undergo maturation. Here, we demonstrate that the RNA binding protein LIN28B plays an important role in the production of hair cells by supporting cells and provide evidence that the developmental drop in supporting cell plasticity in the mammalian cochlea is, at least in part, a product of declining LIN28B-mammalian target of rapamycin (mTOR) activity. Employing murine cochlear organoid and explant cultures to model mitotic and nonmitotic mechanisms of hair cell generation, we show that loss of LIN28B function, due to its conditional deletion, or due to overexpression of the antagonistic miRNAlet-7g, suppressed Akt-mTOR complex 1 (mTORC1) activity and renders young, immature supporting cells incapable of generating hair cells. Conversely, we found that LIN28B overexpression increased Akt-mTORC1 activity and allowed supporting cells that were undergoing maturation to de-differentiate into progenitor-like cells and to produce hair cells via mitotic and nonmitotic mechanisms. Finally, using the mTORC1 inhibitor rapamycin, we demonstrate that LIN28B promotes supporting cell plasticity in an mTORC1-dependent manner.


2000 ◽  
Vol 83 (5) ◽  
pp. 2740-2756 ◽  
Author(s):  
S. Masetto ◽  
P. Perin ◽  
A. Malusà ◽  
G. Zucca ◽  
P. Valli

The electrophysiological properties of developing vestibular hair cells have been investigated in a chick crista slice preparation, from embryonic day 10 ( E10) to E21 (when hatching would occur). Patch-clamp whole-cell experiments showed that different types of ion channels are sequentially expressed during development. An inward Ca2+ current and a slow outward rectifying K+current ( I K(V)) are acquired first, at or before E10, followed by a rapid transient K+current ( I K(A)) at E12, and by a small Ca-dependent K+ current ( I KCa) at E14. Hair cell maturation then proceeds with the expression of hyperpolarization-activated currents: a slow I h appears first, around E16, followed by the fast inward rectifier I K1around E19. From the time of its first appearance, I K(A) is preferentially expressed in peripheral ( zone 1) hair cells, whereas inward rectifying currents are preferentially expressed in intermediate ( zone 2) and central ( zone 3) hair cells. Each conductance conferred distinctive properties on hair cell voltage response. Starting from E15, some hair cells, preferentially located at the intermediate region, showed the amphora shape typical of type I hair cells. From E17 (a time when the afferent calyx is completed) these cells expressed I K, L, the signature current of mature type I hair cells. Close to hatching, hair cell complements and regional organization of ion currents appeared similar to those reported for the mature avian crista. By the progressive acquisition of different types of inward and outward rectifying currents, hair cell repolarization after both positive- and negative-current injections is greatly strengthened and speeded up.


1994 ◽  
Vol 71 (2) ◽  
pp. 666-684 ◽  
Author(s):  
R. A. Baird

1. Hair cells in whole-mount in vitro preparations of the utricular macula of the bullfrog (Rana catesbeiana) were selected according to their macular location and hair bundle morphology. The voltage responses of selected hair cells to intracellular current steps and sinusoids in the frequency range of 0.5-200 Hz were studied with conventional intracellular recordings. 2. The utricular macula is divided into medial and lateral parts by the striola, a 75- to 100-microns zone that runs for nearly the entire length of the sensory macula near its lateral border. The striola is distinguished from flanking extrastriolar regions by the elevated height of its apical surface and the wider spacing of its hair cells. A line dividing hair cells of opposing polarities, located near the lateral border of the striola, separates it into medial and lateral parts. On average, the striola consists of five to seven medial and two to three lateral rows of hair cells. 3. Utricular hair cells were classified into four types on the basis of hair bundle morphology. Type B cells, the predominant hair cell type in the utricular macula, are small cells with short sterocilia and kinocilia 2-6 times as long as their longest stereocilia. These hair cells were found throughout the extrastriola and, more rarely, in the striolar region. Three other hair cell types were restricted to the striolar region. Type C cells, found primarily in the outer striolar rows, resemble enlarged versions of Type B hair cells. Type F cells have kinocilia approximately equal in length to their longest stereocilia and are restricted to the middle striolar rows. Type E cells, found only in the innermost striolar rows, have short kinocilia with prominent kinociliary bulbs. 4. The resting potential of 99 hair cells was -58.0 +/- 7.6 (SD) mV and did not vary significantly for hair cells in differing macular locations or with differing hair bundle morphology. The RN of hair cells, measured from the voltage response to current steps, varied from 200 to > 2,000 M omega and was not well correlated with cell size. On average, Type B cells had the highest RN, followed by Type F, Type E, and Type C cells. When normalized to their surface area, the membrane resistance of hair cells ranged from < 1,000 to > 10,000 k omega.cm2. The input capacitance of hair cells ranged from < 3 to > 15 pA, corresponding on average to a membrane capacitance of 0.8 +/- 0.2 pA/cm2.(ABSTRACT TRUNCATED AT 400 WORDS)


2015 ◽  
Vol 600 ◽  
pp. 164-170 ◽  
Author(s):  
Miaomiao Han ◽  
Dongzhen Yu ◽  
Qiang Song ◽  
Jiping Wang ◽  
Pin Dong ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Pengcheng Xu ◽  
Longhao Wang ◽  
Hu Peng ◽  
Huihui Liu ◽  
Hongchao Liu ◽  
...  

Mutations in a number of genes encoding mitochondrial aminoacyl-tRNA synthetases lead to non-syndromic and/or syndromic sensorineural hearing loss in humans, while their cellular and physiological pathology in cochlea has rarely been investigated in vivo. In this study, we showed that histidyl-tRNA synthetase HARS2, whose deficiency is associated with Perrault syndrome 2 (PRLTS2), is robustly expressed in postnatal mouse cochlea including the outer and inner hair cells. Targeted knockout of Hars2 in mouse hair cells resulted in delayed onset (P30), rapidly progressive hearing loss similar to the PRLTS2 hearing phenotype. Significant hair cell loss was observed starting from P45 following elevated reactive oxygen species (ROS) level and activated mitochondrial apoptotic pathway. Despite of normal ribbon synapse formation, whole-cell patch clamp of the inner hair cells revealed reduced calcium influx and compromised sustained synaptic exocytosis prior to the hair cell loss at P30, consistent with the decreased supra-threshold wave I amplitudes of the auditory brainstem response. Starting from P14, increasing proportion of morphologically abnormal mitochondria was observed by transmission electron microscope, exhibiting swelling, deformation, loss of cristae and emergence of large intrinsic vacuoles that are associated with mitochondrial dysfunction. Though the mitochondrial abnormalities are more prominent in inner hair cells, it is the outer hair cells suffering more severe cell loss. Taken together, our results suggest that conditional knockout of Hars2 in mouse cochlear hair cells leads to accumulating mitochondrial dysfunction and ROS stress, triggers progressive hearing loss highlighted by hair cell synaptopathy and apoptosis, and is differentially perceived by inner and outer hair cells.


Author(s):  
Ru Zhang ◽  
Xiao-Peng Liu ◽  
Ya-Juan Li ◽  
Ming Wang ◽  
Lin Chen ◽  
...  

AbstractBackgroundHuman cochlear hair cells cannot spontaneously regenerate after loss. In contrast, those in fish and amphibians have a remarkable ability to regenerate after damaged. Previous studies focus on signaling mechanisms of hair cell regeneration, such as Wnt and Notch signals but seldom on the fact that the beginning of regeneration is accompanied by a large number of inflammatory responses. The detailed role of this inflammation in hair cell regeneration is still unknown. In addition, there is no appropriate behavioral method to quantitatively evaluate the functional recovery of lateral line hair cells after regeneration.ResultsIn this study, we found that when inflammation was suppressed, the regeneration of lateral line hair cells and the recovery of the rheotaxis of the larvae were significantly delayed. Calcium imaging showed that the function of the neuromasts in the inflammation-inhibited group was weaker than that in the non-inflammation-inhibited group at the Early Stage of regeneration, and returned to normal at the Late Stage. Calcium imaging also revealed the cause of the mismatch between the function and quantity during regeneration.ConclusionsOur results, meanwhile, suggest that suppressing inflammation delays hair cell regeneration and functional recovery when hair cells are damaged. This study may provide a new knowledge for how to promote hair cell regeneration and functional recovery in adult mammals.


2004 ◽  
Vol 91 (6) ◽  
pp. 2422-2428 ◽  
Author(s):  
Marc D. Eisen ◽  
Maria Spassova ◽  
Thomas D. Parsons

Hearing requires the hair cell synapse to maintain notable temporal fidelity (≤1 ms) while sustaining neurotransmitter release for prolonged periods of time (minutes). Here we probed the properties and possible anatomical substrate of prolonged neurotransmitter release by using electrical measures of cell surface area as a proxy for neurotransmitter release to study hair cell exocytosis evoked by repetitive stimuli. We observed marked depression of exocytosis by chick tall hair cells. This exocytic depression cannot be explained by calcium current inactivation, presynaptic autoinhibition by metabotropic glutamate receptors, or postsynaptic receptor desensitization. Rather, cochlear hair cell exocytic depression resulted from the exhaustion of a functional vesicle pool. This releasable vesicle pool is large, totaling approximately 8,000 vesicles, and is nearly 10 times greater than the number of vesicles tethered to synaptic ribbons. Such a large functional pool suggests the recruitment of cytoplasmic vesicles to sustain exocytosis, important for maintaining prolonged, high rates of neural activity needed to encode sound.


Sign in / Sign up

Export Citation Format

Share Document