scholarly journals Resource partitioning among top predators in a Miocene food web

2013 ◽  
Vol 280 (1750) ◽  
pp. 20122138 ◽  
Author(s):  
M. Soledad Domingo ◽  
Laura Domingo ◽  
Catherine Badgley ◽  
Oscar Sanisidro ◽  
Jorge Morales

The exceptional fossil sites of Cerro de los Batallones (Madrid Basin, Spain) contain abundant remains of Late Miocene mammals. From these fossil assemblages, we have inferred diet, resource partitioning and habitat of three sympatric carnivorous mammals based on stable isotopes. The carnivorans include three apex predators: two sabre-toothed cats (Felidae) and a bear dog (Amphicyonidae). Herbivore and carnivore carbon isotope ( δ 13 C) values from tooth enamel imply the presence of a woodland ecosystem dominated by C 3 plants. δ 13 C values and mixing-model analyses suggest that the two sabre-toothed cats, one the size of a leopard and the other the size of a tiger, consumed herbivores with similar δ 13 C values from a more wooded portion of the ecosystem. The two sabre-toothed cats probably hunted prey of different body sizes, and the smaller species could have used tree cover to avoid encounters with the larger felid. For the bear dog, δ 13 C values are higher and differ significantly from those of the sabre-toothed cats, suggesting a diet that includes prey from more open woodland. Coexistence of the sabre-toothed cats and the bear dog was likely facilitated by prey capture in different portions of the habitat. This study demonstrates the utility of stable isotope analysis for investigating the behaviour and ecology of members of past carnivoran guilds.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aaron B. Carlisle ◽  
Elizabeth Andruszkiewicz Allan ◽  
Sora L. Kim ◽  
Lauren Meyer ◽  
Jesse Port ◽  
...  

AbstractThe Cookiecutter shark (Isistius brasiliensis) is an ectoparasitic, mesopelagic shark that is known for removing plugs of tissue from larger prey, including teleosts, chondrichthyans, cephalopods, and marine mammals. Although this species is widely distributed throughout the world’s tropical and subtropical oceanic waters, like many deep-water species, it remains very poorly understood due to its mesopelagic distribution. We used a suite of biochemical tracers, including stable isotope analysis (SIA), fatty acid analysis (FAA), and environmental DNA (eDNA), to investigate the trophic ecology of this species in the Central Pacific around Hawaii. We found that large epipelagic prey constituted a relatively minor part of the overall diet. Surprisingly, small micronektonic and forage species (meso- and epipelagic) are the most important prey group for Cookiecutter sharks across the studied size range (17–43 cm total length), with larger mesopelagic species or species that exhibit diel vertical migration also being important prey. These results were consistent across all the tracer techniques employed. Our results indicate that Cookiecutter sharks play a unique role in pelagic food webs, feeding on prey ranging from the largest apex predators to small, low trophic level species, in particular those that overlap with the depth distribution of the sharks throughout the diel cycle. We also found evidence of a potential shift in diet and/or habitat with size and season. Environmental DNA metabarcoding revealed new prey items for Cookiecutter sharks while also demonstrating that eDNA can be used to identify recent prey in stomachs frozen for extended periods. Integrating across chemical tracers is a powerful tool for investigating the ecology of elusive and difficult to study species, such as meso- and bathypelagic chondrichthyans, and can increase the amount of information gained from small sample sizes. Better resolving the foraging ecology of these mesopelagic predators is critical for effective conservation and management of these taxa and ecosystems, which are intrinsically vulnerable to overfishing and exploitation.


Author(s):  
Xing Wang ◽  
Henk G. Jansen ◽  
Haico Duin ◽  
Harro A. J. Meijer

AbstractThere are two officially approved methods for stable isotope analysis for wine authentication. One describes δ18O measurements of the wine water using Isotope Ratio Mass Spectrometry (IRMS), and the other one uses Deuterium-Nuclear Magnetic Resonance (2H-NMR) to measure the deuterium of the wine ethanol. Recently, off-axis integrated cavity output (laser) spectroscopy (OA-ICOS) has become an easier alternative to quantify wine water isotopes, thanks to the spectral contaminant identifier (SCI). We utilized an OA-ICOS analyser with SCI to measure the δ18O and δ2H of water in 27 wine samples without any pre-treatment. The OA-ICOS results reveal a wealth of information about the growth conditions of the wines, which shows the advantages to extend the official δ18O wine water method by δ2H that is obtained easily from OA-ICOS. We also performed high-temperature pyrolysis and chromium reduction combined with IRMS measurements to illustrate the “whole wine” isotope ratios. The δ18O results of OA-ICOS and IRMS show non-significant differences, but the δ2H results of both methods differ much more. As the δ2H difference between these two methods is mainly caused by ethanol, we investigated the possibility to deduce deuterium of wine ethanol from this difference. The results present large uncertainties and deviate from the obtained 2H-NMR results. The deviation is caused by the other constituents in the wine, and the uncertainty is due to the limited precision of the SCI-based correction, which need to improve to obtain the 2H values of ethanol as alternative for the 2H-NMR method.


2014 ◽  
Vol 416 ◽  
pp. 142-149 ◽  
Author(s):  
P.J. Le Roux ◽  
J.A. Lee-Thorp ◽  
S.R. Copeland ◽  
M. Sponheimer ◽  
D.J. de Ruiter

Author(s):  
Alicia Ventresca Miller ◽  
Ricardo Fernandes ◽  
Anneke Janzen ◽  
Ayushi Nayak ◽  
Jillian Swift ◽  
...  

Author(s):  
Katie A. Hemer ◽  
Jane A. Evans

Stable isotope analysis is firmly established as a method for the investigation of past population mobility. The distinction between local and non-local individuals within a cemetery population relies on identifying an individual’s place of childhood residence through the analysis of strontium and oxygen isotopes present in human tooth enamel. Traditionally, studies investigating mobility focus on the analysis of a single tooth. More recently, however, it has become apparent that in order to investigate the mobility of an individual during childhood—and thus to consider the importance of children in the migration process—it is necessary to analyse a series of teeth which form at different stages during the early years of life. This chapter will consider the potential of—and challenges surrounding—this scientific approach to the investigation of childhood mobility in the past.


2015 ◽  
Vol 112 (12) ◽  
pp. 3674-3679 ◽  
Author(s):  
Kendra L. Chritz ◽  
Fiona B. Marshall ◽  
M. Esperanza Zagal ◽  
Francis Kirera ◽  
Thure E. Cerling

Specialized pastoralism developed ∼3 kya among Pastoral Neolithic Elmenteitan herders in eastern Africa. During this time, a mosaic of hunters and herders using diverse economic strategies flourished in southern Kenya. It has been argued that the risk for trypanosomiasis (sleeping sickness), carried by tsetse flies in bushy environments, had a significant influence on pastoral diversification and migration out of eastern Africa toward southern Africa ∼2 kya. Elmenteitan levels at Gogo Falls (ca. 1.9–1.6 kya) preserve a unique faunal record, including wild mammalian herbivores, domestic cattle and caprines, fish, and birds. It has been suggested that a bushy/woodland habitat that harbored tsetse fly constrained production of domestic herds and resulted in subsistence diversification. Stable isotope analysis of herbivore tooth enamel (n = 86) from this site reveals, instead, extensive C4 grazing by both domesticates and the majority of wild herbivores. Integrated with other ecological proxies (pollen and leaf wax biomarkers), these data imply an abundance of C4 grasses in the Lake Victoria basin at this time, and thus little risk for tsetse-related barriers to specialized pastoralism. These data provide empirical evidence for the existence of a grassy corridor through which small groups of herders could have passed to reach southern Africa.


2010 ◽  
Vol 88 (2) ◽  
pp. 186-194 ◽  
Author(s):  
C. E. McParland ◽  
C. A. Paszkowski ◽  
J. L. Newbrey

Dietary overlap between waterbirds and fish in many freshwater systems can lead to competition for food resources and changes in the trophic position of top predators. We used stable isotope analysis of carbon and nitrogen from egg tissues to document differences in the trophic position of breeding Red-necked Grebes ( Podiceps grisegena (Boddaert, 1783)) on wetlands with and without fish in the Aspen Parkland of Alberta, Canada. Grebes occupied higher trophic levels in the presence of fish than in their absence, suggesting that small-bodied fish in Aspen Parkland food webs may lengthen food chains in which grebes are top predators. A mixed diet of invertebrates and fishes may be adaptive for grebes in this highly variable ecosystem where fish colonize wetlands in wet years and are extirpated in dry years. Carbon analyses indicated that female grebes likely obtained resources for egg production from breeding sites and not from wintering areas, as eggs had similar δ13C values to wetland primary producers, invertebrates, and fishes.


Sign in / Sign up

Export Citation Format

Share Document