scholarly journals Females roam while males patrol: divergence in breeding season movements of pack-ice polar bears ( Ursus maritimus )

2013 ◽  
Vol 280 (1752) ◽  
pp. 20122371 ◽  
Author(s):  
Kristin L. Laidre ◽  
Erik W. Born ◽  
Eliezer Gurarie ◽  
Øystein Wiig ◽  
Rune Dietz ◽  
...  

Intraspecific differences in movement behaviour reflect different tactics used by individuals or sexes to favour strategies that maximize fitness. We report movement data collected from n = 23 adult male polar bears with novel ear-attached transmitters in two separate pack ice subpopulations over five breeding seasons. We compared movements with n = 26 concurrently tagged adult females, and analysed velocities, movement tortuosity, range sizes and habitat selection with respect to sex, reproductive status and body mass. There were no differences in 4-day displacements or sea ice habitat selection for sex or population. By contrast, adult females in all years and both populations had significantly more linear movements and significantly larger breeding range sizes than males. We hypothesized that differences were related to encounter rates, and used observed movement metrics to parametrize a simulation model of male–male and male–female encounter. The simulation showed that the more tortuous movement of males leads to significantly longer times to male–male encounter, while having little impact on male–female encounter. By contrast, linear movements of females are consistent with a prioritized search for sparsely distributed prey. These results suggest a possible mechanism for explaining the smaller breeding range sizes of some solitary male carnivores compared to females.

2021 ◽  
Author(s):  
Erin M. Henderson ◽  
Andrew E. Derocher

The Cape Bathurst polynya and flaw lead (CBP) are major, predictable habitat features with ≤15% ice cover in an otherwise ice-covered Beaufort Sea, and thought to provide hunting opportunities for polar bears (Ursus maritimus Phipps, 1774). We assessed 78 adult (female; with and without cubs) and subadult (male and female) polar bears’ use of the CBP from October – June, 2007–2014. The CBP was up to 725 km wide in autumn, ice-covered in winter, and <306 km wide in spring. Seventy-nine percent (n = 62) of the bears used the CBP (≥1 location <2.4 km, or one 4 h step length, from the CBP). Use was higher for solitary adult females and subadult males, which travelled faster with low turning angles along wider sections than females with offspring and subadult females. Bears were closest to the CBP during the spring hyperphagia season. While a wider CBP did not prevent crossing, bears primarily crossed from the coast towards pack ice at locations 53% narrower than areas not crossed. Bears might avoid crossing when it would require a long-distance swim. The CBP affects polar bear ecology by providing hunting habitat and a corridor that could increase prey encounters but may affect movement.


2021 ◽  
Author(s):  
Florian Hodel ◽  
John R. Fieberg

1. Animal movement is often modeled in discrete time, formulated in terms of steps taken between successive locations at regular time intervals. Steps are characterized by the distance between successive locations (step-lengths) and changes in direction (turn angles). Animals commonly exhibit a mix of directed movements with large step lengths and turn angles near 0 when traveling between habitat patches and more wandering movements with small step lengths and uniform turn angles when foraging. Thus, step-lengths and turn angles will typically be cross-correlated. 2. Most models of animal movement assume that step-lengths and turn angles are independent, likely due to a lack of available alternatives. Here, we show how the method of copulae can be used to fit multivariate distributions that allow for correlated step lengths and turn angles. 3. We describe several newly developed copulae appropriate for modeling animal movement data and fit these distributions to data collected on fishers (Pekania pennanti). The copulae are able to capture the inherent correlation in the data and provide a better fit than a model that assumes independence. Further, we demonstrate via simulation that this correlation can impact movement patterns (e.g. rates of dispersion overtime). 4. We see many opportunities to extend this framework (e.g. to consider autocorrelation in step attributes) and to integrate it into existing frameworks for modeling animal movement and habitat selection. For example, copula could be used to more accurately sample available locations when conducting habitat-selection analyses.


The Condor ◽  
2020 ◽  
Author(s):  
Andrew S Elgin ◽  
Robert G Clark ◽  
Christy A Morrissey

Abstract Millions of wetland basins, embedded in croplands and grasslands, are biodiversity hotspots in North America’s Prairie Pothole Region, but prairie wetlands continue to be degraded and drained, primarily for agricultural activities. Aerial insectivorous swallows are known to forage over water, but it is unclear whether swallows exhibit greater selection for wetlands relative to other habitats in croplands and grasslands. Central-place foraging theory suggests that habitat selectivity should increase with traveling distance from a central place, such that foragers compensate for traveling costs by selecting more profitable foraging habitat. Using global positioning system (GPS) tags, we evaluated habitat selection by female Tree Swallows (Tachycineta bicolor) at 4 sites containing wetlands and where terrestrial land cover was dominated by grasslands (grass, herbaceous cover) and/or cultivated cropland. We also used sweep-net transects to assess the abundance and biomass of flying insects in different habitats available to swallows (wetland pond margins, grassy field margins, and representative uplands). As expected for a central-place forager, GPS-tagged swallows selected more for wetland ponds (disproportionate to availability), and appeared to increasingly select for wetlands with increasing distance from their nests. On cropland-dominated sites, insect abundance and biomass tended to be higher in pond margins or grassy field margins compared to cropped uplands, while abundance and biomass were more uniform among sampled habitats at sites dominated by grass and herbaceous cover. Swallow habitat selection was not clearly explained by the distribution of sampled insects among habitats; however, traditional terrestrial sampling methods may not adequately reflect prey distribution and availability to aerially foraging swallows. Overall, our results underscore the importance of protecting and enhancing prairie wetlands and other non-crop habitats in agricultural landscapes, given their disproportionate use and capacity to support breeding swallow and insect populations.


2007 ◽  
Vol 139 (5) ◽  
pp. 678-684 ◽  
Author(s):  
B.H. King

AbstractWhen habitat quality is variable, there should be strong selection for the ability to detect and respond to the variation. Adult females of the parasitoid wasp Nasonia vitripennis (Walker) are known to increase their restlessness (the proportion of time in locomotion) both during and after exposure to a poor quality host. Doing so provides a mechanism for leaving a poor host and potentially finding a better host. This study examined whether restlessness also changes in response to competition as indicated by the presence of adult conspecifics. Both restlessness and the probability of dispersing across an inhospitable environment were greater when a female was with another female than when she was alone. However, restlessness did not remain elevated after the other female was removed. In contrast with females, restlessness of males did not increase either during or after exposure to other males, and the probability of dispersing across an inhospitable environment was unaffected by the presence of another male. The difference between females and males may be related to differences in dispersal ability and in the abundance and distribution of hosts versus mates.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jesse N. Popp ◽  
David N. C. McGeachy ◽  
Josef Hamr

Seasonal habitat selection by the reintroduced Burwash elk population, approximately 30 km south of Sudbury, Ontario, has been analysed in order to assist in the development of future management. Twenty-five adult females were radio-collared and tracked 1–3 times a week for 3 years. The most prominent patterns included selection of intolerant hardwood forests (trembling aspen, white birch, and balsam poplar) during all seasons, while Great Lakes-St. Lawrence pines (white and red pine dominated stands) were used less than expected based on availability for all seasons. The selection patterns are likely associated with seasonal climatic conditions and forage preferences. Because the selection behaviours displayed here varied greatly from other elk habitat studies, it is suggested that managers consider the importance of population-specific habitat studies before developing related strategies.


BMC Zoology ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Helen M. K. O’Neill ◽  
Sarah M. Durant ◽  
Rosie Woodroffe

Abstract Background Habitat loss is a key threat to the survival of many species. Habitat selection studies provide key information for conservation initiatives by identifying important habitat and anthropogenic characteristics influencing the distribution of threatened species in changing landscapes. However, assumptions about the homogeneity of individual choices on habitat, regardless of life stage, are likely to result in inaccurate assessment of conservation priorities. This study addresses a knowledge gap in how animals at different life stages diverge in how they select habitat and anthropogenic features, using a free-ranging population of African wild dogs living in a human-dominated landscape in Kenya as a case study. Using GPS collar data to develop resource selection function and step selection function models, this study investigated differences between second order (selection of home range across a landscape) and third order (selection of habitat within the home range) habitat selection across four life history stages when resource requirements may vary: resident-non-denning, resident-heavily-pregnant, resident-denning and dispersing. Results Wild dogs showed strong second order selection for areas with low human population densities and areas close to rivers and roads. More rugged areas were also generally selected, as were areas with lower percentage tree cover. The strength of selection for habitat variables varied significantly between life stages; for example, dispersal groups were more tolerant of higher human population densities, whereas denning and pregnant packs were least tolerant of such areas. Conclusions Habitat selection patterns varied between individuals at different life stages and at different orders of selection. These analyses showed that denning packs and dispersal groups, the two pivotal life stages which drive wild dog population dynamics, exhibited different habitat selection to resident-non-breeding packs. Dispersal groups were relatively tolerant of higher human population densities whereas denning packs preferred rugged, remote areas. Evaluating different orders of selection was important as the above trends may not be detectable at all levels of selection for all habitat characteristics. Our analyses demonstrate that when life stage information is included in analyses across different orders of selection, it improves our understanding of how animals use their landscapes, thus providing important insights to aid conservation planning.


2015 ◽  
Vol 282 (1805) ◽  
pp. 20143042 ◽  
Author(s):  
Leo Polansky ◽  
Werner Kilian ◽  
George Wittemyer

Spatial memory facilitates resource acquisition where resources are patchy, but how it influences movement behaviour of wide-ranging species remains to be resolved. We examined African elephant spatial memory reflected in movement decisions regarding access to perennial waterholes. State–space models of movement data revealed a rapid, highly directional movement behaviour almost exclusively associated with visiting perennial water. Behavioural change point (BCP) analyses demonstrated that these goal-oriented movements were initiated on average 4.59 km, and up to 49.97 km, from the visited waterhole, with the closest waterhole accessed 90% of the time. Distances of decision points increased when switching to different waterholes, during the dry season, or for female groups relative to males, while selection of the closest waterhole decreased when switching. Overall, our analyses indicated detailed spatial knowledge over large scales, enabling elephants to minimize travel distance through highly directional movement when accessing water. We discuss the likely cognitive and socioecological mechanisms driving these spatially precise movements that are most consistent with our findings. By applying modern analytic techniques to high-resolution movement data, this study illustrates emerging approaches for studying how cognition structures animal movement behaviour in different ecological and social contexts.


Sign in / Sign up

Export Citation Format

Share Document