scholarly journals Synergistic effects of non- Apis bees and honey bees for pollination services

2013 ◽  
Vol 280 (1754) ◽  
pp. 20122767 ◽  
Author(s):  
Claire Brittain ◽  
Neal Williams ◽  
Claire Kremen ◽  
Alexandra-Maria Klein

In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non- Apis bees present) bee communities. In orchards with non- Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non- Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner.

2020 ◽  
Author(s):  
Paul J. CaraDonna ◽  
Nickolas M. Waser

AbstractEcological communities consist of species that are joined in complex networks of interspecific interaction. The interactions that networks depict often form and dissolve rapidly, but this temporal variation is not well integrated into our understanding of the causes and consequences of network structure. If interspecific interactions exhibit temporal flexibility across time periods over which organisms co-occur, then the emergent structure of the corresponding network may also be temporally flexible, something that a temporally-static perspective would miss. Here, we use an empirical system to examine short-term flexibility in network structure (connectance, nestedness, and specialization), and in individual species interactions that contribute to that structure. We investigated weekly plant-pollinator networks in a subalpine ecosystem across three summer growing seasons. To link the interactions of individual species to properties of their networks, we examined weekly temporal variation in species’ contributions to network structure. As a test of the potential robustness of networks to perturbation, we also simulated the random loss of species from weekly networks. We then compared the properties of weekly networks to the properties of cumulative networks that aggregate field observations over each full season. A week-to-week view reveals considerable flexibility in the interactions of individual species and their contributions to network structure. For example, species that would be considered relatively generalized across their entire activity period may be much more specialized at certain times, and at no point as generalized as the cumulative network may suggest. Furthermore, a week-to-week view reveals corresponding temporal flexibility in network structure and potential robustness throughout each summer growing season. We conclude that short-term flexibility in species interactions leads to short-term variation in network properties, and that a season-long, cumulative perspective may miss important aspects of the way in which species interact, with implications for understanding their ecology, evolution, and conservation.


2020 ◽  
Vol 15 (2) ◽  
pp. 225-228
Author(s):  
P V Rami Reddy

Decline in honey bee populations has become a matter of concern and their conservation is very essential to sustain essential ecosystem services. They provide making available continuous supply of floral resources is of immense value in conserving honey bees. The effectiveness of an ornamental creeper, Antigonon leptopus Hook. & Arn as a sustainable bee forage plant was evaluated. It attracts four major native species of honey bees viz., Apis cerana, A. florea, A. dorsata and Tetragonula iridipennis. The wild little bee, A. florea was the most dominant forager followed by the Indian bee, A. cerana. The plant is amenable for easy multiplication through seeds as well as cuttings and meets both aesthetic and ecological needs. Using Antigonon, different studies related to honey bees like assessing species diversity, foraging behaviour, temperature driven shifts etc. can be carried out. Popularising perennial bee flora like Antigonon would help in conserving honey bees in both natural and urban habitats. Since Antigonon attracts all species of honey bees throughout the year, it could be utilized as a potential bioindicator of honey bee populations in a given environment.


2014 ◽  
Vol 59 (No. 1) ◽  
pp. 1-10 ◽  
Author(s):  
HF Abou-Shaara

Foraging behaviour is one of the distinctive behaviours of honey bees, Apis mellifera. This behaviour is the link between the honey bee colony and the ambient environment. Therefore, various in-colony and out-colony factors have an impact on this behaviour, and many studies have been employed to investigate these factors. Foraging behaviour is not advantageous only for the colony and for plant pollination but also has other benefits. In contrast, some disadvantages have also been discovered to be linked with foraging activity. Practically speaking, the control over this behaviour is very important to maximize colony products as well as to increase other agricultural benefits. This paper presents a review on foraging activity including; the regulation of foraging tasks, factors impacting this behaviour, foraging preference, variations between subspecies, monitoring methods as well as the possible methods for controlling this behaviour. As concluded from this review, more work needs to be performed in order to elucidate certain aspects of foraging behaviour.  


2019 ◽  
Vol 45 (4) ◽  
pp. 686-711
Author(s):  
Daniel Lee Kleinman ◽  
Sainath Suryanarayanan

We explored collaboration between scientists and nonscientists through a deliberative process in which stakeholders interested in the health challenges of honey bees gathered on four occasions over two years to design, carry out, and analyze a set of field experiments on honey bee health. We found that issues of trust and authority were crucial matters in constraining and enabling dialogue among our deliberants. Over the course of our deliberations, participants’ trust for one another and appreciation of their respective interests grew, and differences in professional status appeared to play an increasingly less important role in shaping discussion. The field experiments that deliberants crafted and collectively organized over time became an engagement object that was crucial in altering the dynamics of trust and authority. We understand engagement objects as entities that stakeholders with diverse interests, experiences, and expertise collectively build over time to collectively solve overlapping, interacting problems.


1979 ◽  
Vol 111 (10) ◽  
pp. 1131-1135 ◽  
Author(s):  
R.H. Elliott ◽  
D. Cmiralova ◽  
W.G. Wellington

AbstractForaging honey bees were offered various sucrose–herbicide solutions. Despite the visual attractiveness of the feeding dishes to foragers, six of seven herbicides significantly reduced the incidence of feeding and were judged to be olfactory and gustatory repellents. The most repellent herbicide was 2,4,5-T, which totally inhibited feeding at concentrations as tow as 1000 ppm. The next most repellent was 2,4-DB, followed by linuron, picloram, 2,4-D, and monuron. Paraquat was the only herbicide that did not exhibit marked repellency at concentrations up to 4000 ppm.The implications of these findings are discussed in terms of the impact of herbicide applications on honey bee foraging behaviour, brood development, pollination, and honey production.


2016 ◽  
Vol 60 (1) ◽  
pp. 49-62 ◽  
Author(s):  
Georgios Goras ◽  
Chrysoula Tananaki ◽  
Maria Dimou ◽  
Thomas Tscheulin ◽  
Theodora Petanidou ◽  
...  

Abstract Honey bees are globally regarded as important crop pollinators and are also valued for their honey production. They have been introduced on an almost worldwide scale. During recent years, however, several studies argue their possible competition with unmanaged pollinators. Here we examine the possible effects of honey bees on the foraging behaviour of wild bees on Cistus creticus flowers in Northern Greece. We gradually introduced one, five, and eight honey-bee hives per site, each containing ca. 20,000 workers. The visitation frequency and visit duration of wild bees before and after the beehive introductions were measured by flower observation. While the visitation frequencies of wild bees were unaffected, the average time wild bees spent on C. creticus increased with the introduction of the honey-bee hives. Although competition between honey bees and wild bees is often expected, we did not find any clear evidence for significant effects even in honey-bee densities much higher than the European-wide average of 3.1 colonies/km2.


2020 ◽  
Vol 86 (18) ◽  
Author(s):  
Erick V. S. Motta ◽  
Myra Mak ◽  
Tyler K. De Jong ◽  
J. Elijah Powell ◽  
Angela O'Donnell ◽  
...  

ABSTRACT Honey bees are important agricultural pollinators that rely on a specific gut microbiota for the regulation of their immune system and defense against pathogens. Environmental stressors that affect the bee gut microbial community, such as antibiotics and glyphosate, can indirectly compromise bee health. Most of the experiments demonstrating these effects have been done under laboratory conditions with pure chemicals. Here, we investigated the oral and topical effects of various concentrations of glyphosate in a herbicide formulation on the honey bee gut microbiota and health under laboratory and field conditions. Under all of these conditions, the formulation, dissolved in sucrose syrup or water, affected the abundance of beneficial bacteria in the bee gut in a dose-dependent way. Mark-recapture experiments also demonstrated that bees exposed to the formulation were more likely to disappear from the colony, once reintroduced after exposure. Although no visible effects were observed for hives exposed to the formulation in field experiments, challenge trials with the pathogen Serratia marcescens, performed under laboratory conditions, revealed that bees from hives exposed to the formulation exhibited increased mortality compared with bees from control hives. In the field experiments, glyphosate was detected in honey collected from exposed hives, showing that worker bees transfer xenobiotics to the hive, thereby extending exposure and increasing the chances of exposure to recently emerged bees. These findings show that different routes of exposure to glyphosate-based herbicide can affect honey bees and their gut microbiota. IMPORTANCE The honey bee gut microbial community plays a vital role in immune response and defense against opportunistic pathogens. Environmental stressors, such as the herbicide glyphosate, may affect the gut microbiota, with negative consequences for bee health. Glyphosate is usually sprayed in the field mixed with adjuvants, which enhance herbicidal activity. These adjuvants may also enhance undesired effects in nontargeted organisms. This seems to be the case for glyphosate-based herbicide on honey bees. As we show in this study, oral exposure to either pure glyphosate or glyphosate in a commercial herbicide formulation perturbs the gut microbiota of honey bees, and topical exposure to the formulation also has a direct effect on honey bee health, increasing mortality in a dose-dependent way and leaving surviving bees with a perturbed microbiota. Understanding the effects of herbicide formulations on honey bees may help to protect these important agricultural pollinators.


1986 ◽  
Vol 126 (1) ◽  
pp. 389-401
Author(s):  
D. A. Kuterbach ◽  
B. Walcott

The development of iron granules in honey-bee tissues was investigated using both anatomical and analytical methods. Iron granules are present only in the trophocytes of post-eclosion adults and have the same elemental composition as those in foraging adults. The granules increase in both size and number during ageing. Iron levels in developing worker honey-bees were measured by proton-induced X-ray emission spectroscopy. The rate of iron accumulation was directly related to iron levels in the diet, and the iron can be obtained from pollen and honey, both major food sources of the bee. In adults, the iron content of the fat body reached a maximum level (2.4 +/− 0.15 micrograms mg-1 tissue), regardless of the amount of iron available for ingestion. Maximal iron levels are reached at the time when honey-bee workers commence foraging behaviour, suggesting that iron granules may play a role in orientation. Alternatively, accumulation of iron in granules may be a method of maintaining iron homeostasis.


2017 ◽  
Vol 284 (1855) ◽  
pp. 20170768 ◽  
Author(s):  
Otso Ovaskainen ◽  
Gleb Tikhonov ◽  
David Dunson ◽  
Vidar Grøtan ◽  
Steinar Engen ◽  
...  

Estimation of intra- and interspecific interactions from time-series on species-rich communities is challenging due to the high number of potentially interacting species pairs. The previously proposed sparse interactions model overcomes this challenge by assuming that most species pairs do not interact. We propose an alternative model that does not assume that any of the interactions are necessarily zero, but summarizes the influences of individual species by a small number of community-level drivers. The community-level drivers are defined as linear combinations of species abundances, and they may thus represent e.g. the total abundance of all species or the relative proportions of different functional groups. We show with simulated and real data how our approach can be used to compare different hypotheses on community structure. In an empirical example using aquatic microorganisms, the community-level drivers model clearly outperformed the sparse interactions model in predicting independent validation data.


2019 ◽  
Vol 13 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Zekiros Fikadu

This paper reviews the role and economic importance of the pollination service by honey bees (Apis mellifera) to agricultural crops and food security in the Ethiopian context. Honey bees provide pollination services that are crucial for sexual reproduction and improving the quality and quantity of many agricultural crops. From the significant 53 crops cultivated in Ethiopia, 33 (62.2%) of them are dependent on biological pollinators. Besides this, honey bees play a vital economic role, and their contribution to pollination service in agriculture crops is around 0.815 billion dollars in Ethiopia. Nevertheless, this contribution is unnoticed by Ethiopian farmers. Pollination by honey bee plays an essential role in human nutrition and supplies food security, income in households, and ecosystem services. Declines in insect pollinators, including honey bees across the world, have raised concerns about the supply of pollination services to agriculture, and it is because one-third of agriculture productions depend upon pollination, mainly by honey bees. Among the several factors responsible for the decline of honey bee colonies, improper pesticide application, and climate change are the elements and make them at risk. The potential adverse effects of pollinator declines include direct economic losses incurred by reduced crop yields as well as broader impacts on the agricultural activity because of lower productivity in the ecosystems. Through promoting and the use of honey bee pollination service as agricultural development packages, it is possible to improve honey bee production and crop yield in Ethiopia.


Sign in / Sign up

Export Citation Format

Share Document