scholarly journals Life-history specialization was not an evolutionary dead-end in Pyrenean cave beetles

2014 ◽  
Vol 281 (1781) ◽  
pp. 20132978 ◽  
Author(s):  
Alexandra Cieslak ◽  
Javier Fresneda ◽  
Ignacio Ribera

Research on subterranean organisms has focused on the colonization process and some of the associated phenotypic changes, but little is known on the long-term evolutionary dynamics of subterranean lineages and the origin of some highly specialized complex characters. One of the most extreme modifications is the reduction of the number of larval instars in some Leptodirini beetles from the ancestral 3 to 2 and ultimately a single instar. This reduction is usually assumed to have occurred independently multiple times within the same lineage and geographical area, but its evolution has never been studied in a phylogenetic framework. Using a comprehensive molecular phylogeny, we found a low number of independent origins of the reduction in the number of instars, with a single transition, dated to the Oligocene–Miocene, from 3 to 2 and then 1 instar in the Pyrenees, the best-studied area. In the Pyrenees, the 1-instar lineage had a diversification rate (0.22 diversification events per lineage per million years) significantly higher than that of 3- or 2-instar lineages (0.10), and similar to that seen in other Coleopteran radiations. Far from being evolutionary dead-ends, ancient lineages fully adapted to subterranean life seem able to persist and diversify over long evolutionary periods.

2020 ◽  
Vol 110 (1) ◽  
pp. 49-57 ◽  
Author(s):  
C. Alcaide ◽  
M. P. Rabadán ◽  
M. Juárez ◽  
P. Gómez

Mixed viral infections are common in plants, and the evolutionary dynamics of viral populations may differ depending on whether the infection is caused by single or multiple viral strains. However, comparative studies of single and mixed infections using viral populations in comparable agricultural and geographical locations are lacking. Here, we monitored the occurrence of pepino mosaic virus (PepMV) in tomato crops in two major tomato-producing areas in Murcia (southeastern Spain), supporting evidence showing that PepMV disease-affected plants had single infections of the Chilean 2 (CH2) strain in one area and the other area exhibited long-term (13 years) coexistence of the CH2 and European (EU) strains. We hypothesized that circulating strains of PepMV might be modulating the differentiation between them and shaping the evolutionary dynamics of PepMV populations. Our phylogenetic analysis of 106 CH2 isolates randomly selected from both areas showed a remarkable divergence between the CH2 isolates, with increased nucleotide variability in the geographical area where both strains cocirculate. Furthermore, the potential virus–virus interaction was studied further by constructing six full-length infectious CH2 clones from both areas, and assessing their viral fitness in the presence and absence of an EU-type isolate. All CH2 clones showed decreased fitness in mixed infections and although complete genome sequencing indicated a nucleotide divergence of those CH2 clones by area, the magnitude of the fitness response was irrespective of the CH2 origin. Overall, these results suggest that although agroecological cropping practices may be particularly important for explaining the evolutionary dynamics of PepMV in tomato crops, the cocirculation of both strains may have implications on the genetic variability of PepMV populations.


Author(s):  
Aaron M. Ellison ◽  
Lubomír Adamec

The material presented in the chapters of Carnivorous Plants: Physiology, Ecology, and Evolution together provide a suite of common themes that could provide a framework for increasing progress in understanding carnivorous plants. All speciose genera would benefit from more robust, intra-generic classifications in a phylogenetic framework that uses a unified species concept. As more genomic, proteomic, and transcriptomic data accrue, new insights will emerge regarding trap biochemistry and regulation; interactions with commensals; and the importance of intraspecific variability on which natural selection works. Continued elaboration of field experiments will provide new insights into basic physiology; population biology; plant-animal and plant-microbe relationships; and evolutionary dynamics, all of which will aid conservation efforts and contribute to discussions of assisted migration as the climate continues to change.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 522
Author(s):  
Régis Santos ◽  
Wendell Medeiros-Leal ◽  
Osman Crespo ◽  
Ana Novoa-Pabon ◽  
Mário Pinho

With the commercial fishery expansion to deeper waters, some vulnerable deep-sea species have been increasingly captured. To reduce the fishing impacts on these species, exploitation and management must be based on detailed and precise information about their biology. The common mora Mora moro has become the main deep-sea species caught by longliners in the Northeast Atlantic at depths between 600 and 1200 m. In the Azores, landings have more than doubled from the early 2000s to recent years. Despite its growing importance, its life history and population structure are poorly understood, and the current stock status has not been assessed. To better determine its distribution, biology, and long-term changes in abundance and size composition, this study analyzed a fishery-dependent and survey time series from the Azores. M. moro was found on mud and rock bottoms at depths below 300 m. A larger–deeper trend was observed, and females were larger and more abundant than males. The reproductive season took place from August to February. Abundance indices and mean sizes in the catch were marked by changes in fishing fleet operational behavior. M. moro is considered vulnerable to overfishing because it exhibits a long life span, a large size, slow growth, and a low natural mortality.


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 122
Author(s):  
Irene Sanchez Gonzalez ◽  
Garrett W. Hopper ◽  
Jamie Bucholz ◽  
Carla L. Atkinson

Biodiversity hotspots can serve as protected areas that aid in species conservation. Long-term monitoring of multiple taxonomic groups within biodiversity hotspots can offer insight into factors influencing their dynamics. Mussels (Bivalvia: Unionidae) and fish are highly diverse and imperiled groups of organisms with contrasting life histories that should influence their response to ecological factors associated with local and global change. Here we use historical and contemporary fish and mussel survey data to assess fish and mussel community changes over a 33 year period (1986–2019) and relationships between mussel abundance and their host fish abundance in Bogue Chitto Creek, a tributary of the Alabama River and a biodiversity hotspot. Mussel abundance declined by ~80% and community composition shifted, with eight species previously recorded not found in 2019, and a single individual of the endangered Pleurobema decisum. Fish abundances increased and life history strategies in the community appeared stable and there was no apparent relationship between mussel declines and abundance of host fish. Temporal variation in the proportion of life history traits composing mussel assemblages was also indicative of the disturbances specifically affecting the mussel community. However, changes and declines in mussel assemblages in Bogue Chitto Creek cannot be firmly attributed to any specific factor or events because of gaps in historical environmental and biological data. We believe that mobility differences contributed to differential responses of fish and mussel communities to stressors including habitat degradation, recent droughts and invasive species. Overall, our work indicates that monitoring biodiversity hotspots using hydrological measurements, standardized survey methods and monitoring invasive species abundance would better identify the effects of multiple and interactive stressors that impact disparate taxonomic groups in freshwater ecosystems.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
H. De Kort ◽  
J. G. Prunier ◽  
S. Ducatez ◽  
O. Honnay ◽  
M. Baguette ◽  
...  

AbstractUnderstanding how biological and environmental factors interactively shape the global distribution of plant and animal genetic diversity is fundamental to biodiversity conservation. Genetic diversity measured in local populations (GDP) is correspondingly assumed representative for population fitness and eco-evolutionary dynamics. For 8356 populations across the globe, we report that plants systematically display much lower GDP than animals, and that life history traits shape GDP patterns both directly (animal longevity and size), and indirectly by mediating core-periphery patterns (animal fecundity and plant dispersal). Particularly in some plant groups, peripheral populations can sustain similar GDP as core populations, emphasizing their potential conservation value. We further find surprisingly weak support for general latitudinal GDP trends. Finally, contemporary rather than past climate contributes to the spatial distribution of GDP, suggesting that contemporary environmental changes affect global patterns of GDP. Our findings generate new perspectives for the conservation of genetic resources at worldwide and taxonomic-wide scales.


2016 ◽  
Vol 113 (18) ◽  
pp. 5036-5040 ◽  
Author(s):  
Manabu Sakamoto ◽  
Michael J. Benton ◽  
Chris Venditti

Whether dinosaurs were in a long-term decline or whether they were reigning strong right up to their final disappearance at the Cretaceous–Paleogene (K-Pg) mass extinction event 66 Mya has been debated for decades with no clear resolution. The dispute has continued unresolved because of a lack of statistical rigor and appropriate evolutionary framework. Here, for the first time to our knowledge, we apply a Bayesian phylogenetic approach to model the evolutionary dynamics of speciation and extinction through time in Mesozoic dinosaurs, properly taking account of previously ignored statistical violations. We find overwhelming support for a long-term decline across all dinosaurs and within all three dinosaurian subclades (Ornithischia, Sauropodomorpha, and Theropoda), where speciation rate slowed down through time and was ultimately exceeded by extinction rate tens of millions of years before the K-Pg boundary. The only exceptions to this general pattern are the morphologically specialized herbivores, the Hadrosauriformes and Ceratopsidae, which show rapid species proliferations throughout the Late Cretaceous instead. Our results highlight that, despite some heterogeneity in speciation dynamics, dinosaurs showed a marked reduction in their ability to replace extinct species with new ones, making them vulnerable to extinction and unable to respond quickly to and recover from the final catastrophic event.


2006 ◽  
Vol 2 (SPS5) ◽  
pp. 21-24
Author(s):  
Rajesh Kochhar

AbstractAny international effort to promote astronomy world wide today must necessarily take into account its cultural and historical component. The past few decades have ushered in an age, which we may call the Age of Cultural Copernicanism. In analogy with the cosmological principle that the universe has no preferred location or direction, Cultural Copernicanism would imply that no cultural or geographical area, or ethnic or social group, can be deemed to constitute a superior entity or a benchmark for judging or evaluating others.In this framework, astronomy (as well as science in general) is perceived as a multi-stage civilizational cumulus where each stage builds on the knowledge gained in the previous stages and in turn leads to the next. This framework however is a recent development. The 19th century historiography consciously projected modern science as a characteristic product of the Western civilization decoupled from and superior to its antecedents, with the implication that all material and ideological benefits arising from modern science were reserved for the West.As a reaction to this, the orientalized East has often tended to view modern science as “their” science, distance itself from its intellectual aspects, and seek to defend, protect and reinvent “our” science and the alleged (anti-science) Eastern mode of thought. This defensive mind-set works against the propagation of modern astronomy in most of the non-Western countries. There is thus a need to construct a history of world astronomy that is truly universal and unselfconscious.Similarly, the planetarium programs, for use the world over, should be culturally sensitive. The IAU can help produce cultural-specific modules. Equipped with this paradigmatic background, we can now address the question of actual means to be adopted for the task at hand. Astronomical activity requires a certain minimum level of industrial activity support. Long-term maintenance of astronomical equipment is not a trivial task. There are any number of examples of an expensive facility falling victim to AIDS: Astronomical Instrument Deficiency Syndrome. The facilities planned in different parts of the world should be commensurate with the absorbing power of the acceptor rather than the level of the gifter.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Rödder ◽  
Thomas Schmitt ◽  
Patrick Gros ◽  
Werner Ulrich ◽  
Jan Christian Habel

AbstractClimate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts. We assessed long-term distribution trends of mountain butterflies across the eastern Alps and calculated species’ specific annual range shifts based on field observations and species distribution models, counterbalancing the potential drawbacks of both approaches. We also compiled details on the ecology, behaviour and life-history, and the climate niche of each species assessed. We found that the highest altitudinal maxima were observed recently in the majority of cases, while the lowest altitudes of observations were recorded before 1980. Mobile and generalist species with a broad ecological amplitude tended to move uphill more than specialist and sedentary species. As main drivers we identified climatic conditions and topographic variables, such as insolation and solar irradiation. This study provides important evidence for responses of high mountain taxa to rapid climate change. Our study underlines the advantage of combining historical surveys and museum collection data with cutting-edge analyses.


Sign in / Sign up

Export Citation Format

Share Document