scholarly journals Interactive effects of temperature, food and skeletal mineralogy mediate biological responses to ocean acidification in a widely distributed bryozoan

2017 ◽  
Vol 284 (1853) ◽  
pp. 20162349 ◽  
Author(s):  
Daniel S. Swezey ◽  
Jessica R. Bean ◽  
Aaron T. Ninokawa ◽  
Tessa M. Hill ◽  
Brian Gaylord ◽  
...  

Marine invertebrates with skeletons made of high-magnesium calcite may be especially susceptible to ocean acidification (OA) due to the elevated solubility of this form of calcium carbonate. However, skeletal composition can vary plastically within some species, and it is largely unknown how concurrent changes in multiple oceanographic parameters will interact to affect skeletal mineralogy, growth and vulnerability to future OA. We explored these interactive effects by culturing genetic clones of the bryozoan Jellyella tuberculata (formerly Membranipora tuberculata ) under factorial combinations of dissolved carbon dioxide (CO 2 ), temperature and food concentrations. High CO 2 and cold temperature induced degeneration of zooids in colonies. However, colonies still maintained high growth efficiencies under these adverse conditions, indicating a compensatory trade-off whereby colonies degenerate more zooids under stress, redirecting energy to the growth and maintenance of new zooids. Low-food concentration and elevated temperatures also had interactive effects on skeletal mineralogy, resulting in skeletal calcite with higher concentrations of magnesium, which readily dissolved under high CO 2 . For taxa that weakly regulate skeletal magnesium concentration, skeletal dissolution may be a more widespread phenomenon than is currently documented and is a growing concern as oceans continue to warm and acidify.

2004 ◽  
Vol 61 (4) ◽  
pp. 596-616 ◽  
Author(s):  
Eileen E Hofmann ◽  
Eric N Powell ◽  
Eleanor A Bochenek ◽  
John M Klinck

Abstract A biochemically based model was developed to simulate the growth, development, and metamorphosis of larvae of the Pacific oyster (Crassostrea gigas). The unique characteristics of the model are that it: (1) defines larvae in terms of their protein, neutral lipid, polar lipid, carbohydrate, and ash content; (2) tracks weight separately from length to follow larval condition; and (3) includes genetic variation in growth efficiency and egg quality to better simulate cohort population dynamics. The model includes parameterizations for filtration, ingestion, and respiration, which determine larval growth rate, and processes controlling larval mortality and metamorphosis. Changes in larval tissue composition occur as the larva grows and in response to the biochemical composition of the food. Simulations of larval growth indicate that departures of temperature, salinity, or food content from optimum levels reduce larval cohort survival, either because of metabolic constraints that result in death, unsuccessful metamorphosis, or increased predation resulting from increased larval lifespan. Temperatures and salinities near optimal values improve larval survival at low food concentration by increasing ingestion rate or growth efficiency. Also, survival at a given food concentration can vary widely depending on food composition, which determines food quality. The simulations suggest that the ratio of carbohydrate + lipid-to-protein may best describe the overall food quality, with optimal food compositions being characterized by ratios near 1.2 to 1.4 over a range of food concentrations. In contrast, food compositions containing too much or too little protein reduce larval survival, even at saturating food concentrations. In simulations emphasizing genetic variability within the cohort, larvae with high growth efficiency originating from large eggs out-perform other egg quality–growth efficiency combinations over a wide range of temperature, salinity, and food contents. As a consequence, suboptimal temperature, salinity, or food content compresses genetic variation by uniformly favouring larvae from large eggs with a high growth efficiency. However, the larval survival obtained from simulations that use a range of food qualities is representative of a much broader range of genetic types. Thus, the simulations support the supposition that food quality is an important variable controlling the survival and genetic variability of C. gigas larval cohorts.


2018 ◽  
Vol 15 (14) ◽  
pp. 4353-4365 ◽  
Author(s):  
Clara Jule Marie Hoppe ◽  
Clara M. Flintrop ◽  
Björn Rost

Abstract. In the Arctic Ocean, climate change effects such as warming and ocean acidification (OA) are manifesting faster than in other regions. Yet, we are lacking a mechanistic understanding of the interactive effects of these drivers on Arctic primary producers. In the current study, one of the most abundant species of the Arctic Ocean, the prasinophyte Micromonas pusilla, was exposed to a range of different pCO2 levels at two temperatures representing realistic current and future scenarios for nutrient-replete conditions. We observed that warming and OA synergistically increased growth rates at intermediate to high pCO2 levels. Furthermore, elevated temperatures shifted the pCO2 optimum of biomass production to higher levels. Based on changes in cellular composition and photophysiology, we hypothesise that the observed synergies can be explained by beneficial effects of warming on carbon fixation in combination with facilitated carbon acquisition under OA. Our findings help to understand the higher abundances of picoeukaryotes such as M. pusilla under OA, as has been observed in many mesocosm studies.


2018 ◽  
Author(s):  
Clara J. M. Hoppe ◽  
Clara M. Flintrop ◽  
Björn Rost

Abstract. In the Arctic Ocean, climate change effects such as warming and ocean acidification (OA) are manifesting faster than in other regions. Yet, we are lacking a mechanistic understanding of the interactive effects of these drivers on Arctic primary producers. In the current study, one of the most abundant species of the Arctic Ocean, the prasinophyte Micromonas pusilla, was exposed to a range of different pCO2 levels at two temperatures representing realistic scenarios for current and future conditions. We observed that warming and OA synergistically increased growth rates at intermediate to high pCO2 levels. Furthermore, elevated temperatures shifted the pCO2-optimum of biomass production to higher levels. Based on changes in cellular composition and photophysiology, we hypothesise that the observed synergies can be explained by beneficial effects of warming on carbon fixation in combination with facilitated carbon acquisition under OA. Our findings help to understand the higher abundances of picoeukaryotes such as M. pusilla under OA, as has been observed in many mesocosm studies.


1991 ◽  
Vol 159 (1) ◽  
pp. 473-487 ◽  
Author(s):  
ELIZABETH DAHLHOFF ◽  
GEORGE N. SOMERO

Effects of temperature and hydrostatic pressure were measured on cytosolic malate dehydrogenases (cMDHs) from muscle tissue of a variety of shallow- and deep-living benthic marine invertebrates, including seven species endemic to the deep-sea hydrothermal vents. The apparent Michaelis-Menten constant (Km) of coenzyme (nicotinamide adenine dinucleotide, NADH), used to index temperature and pressure effects, was conserved within a narrow range (approximately 15–25 μmoll−1) at physiological temperatures and pressures for all species. However, at elevated pressures, the Km of NADH rose sharply for cMDHs of shallow species (depths of occurrence >Approximately 500 m), but not for the cMDHs of deep-sea species. Cytosolic MDHs of invertebrates from the deep-sea hydrothermal vents generally were not perturbed by elevated temperatures (15–25°C) at in situ pressures, but cMDHs of cold-adapted deep-sea species were. At a single measurement temperature, the Km of NADH for cMDHs from invertebrates from habitats with well-characterized temperatures was inversely related to maximal sustained body temperature. This correlation was used to predict the maximal sustained body temperatures of vent invertebrates for which maximal habitat and body temperatures are difficult to estimate. Species occurring on the ‘smoker chimneys’, which emit waters with temperatures up to 380°C, are predicted to have sustained body temperatures that are approximately 20–25°C higher than vent species living in cooler vent microhabitats. We conclude that, just as adaptation of enzymes to elevated pressures is important in establishing species’ depth distribution patterns, adaptation of pressure-adapted enzymes to temperature is critical in enabling certain vent species to exploit warm-water microhabitats in the vent environment.


2018 ◽  
Vol 35 ◽  
pp. 1-5
Author(s):  
Adriana P. Rebolledo ◽  
Rachel Collin

. Although larval stages are often considered particularly vulnerable to stressors, for many marine invertebrates studies of thermal tolerance have focused on adults. Here we determined the upper thermal limit (LT50) of the zoea I of four Caribbean crab species (Macrocoelomatrispinosum, Aratuspisonii, Armasesricordi, and Minucarapax) and compared their thermal tolerance over time and among species. The zoea from the subtidal species M.trispinosum and tree climbing mangrove species A.pisonii had a lower thermal tolerance, 35 and 38.5 °C respectively, than did the semiterrestrial A.ricordi and M.rapax. In all four species tested, the estimates of thermal tolerance depend on the duration of exposure to elevated temperatures. Longer exposures to thermal stress produce lower estimates of LT50, which decreased by ~1 °C from a two- to a six-hour exposure. Crab embryos develop on the abdomen of the mother until the larvae are ready to hatch. Therefore, the thermal tolerances of the embryos which need to coincide with the environmental conditions experienced by the adult stage, may carry over into the early zoea stage. Our results suggest that semiterrestrial species, in which embryos may need to withstand higher temperatures than embryos of subtidal species also produce larvae with higher thermal tolerances. Over the short term, the larvae of these tropical crab species can withstand significantly higher temperatures than those experienced in their marine habitat. Longer term rearing studies are necessary to determine the temperature at which chronic exposure has a negative impact on embryonic and larval survival.


Sign in / Sign up

Export Citation Format

Share Document