scholarly journals Cyclic dominance emerges from the evolution of two inter-linked cooperative behaviours in the social amoeba

2018 ◽  
Vol 285 (1881) ◽  
pp. 20180905 ◽  
Author(s):  
Shota Shibasaki ◽  
Masakazu Shimada

Evolution of cooperation has been one of the most important problems in sociobiology, and many researchers have revealed mechanisms that can facilitate the evolution of cooperation. However, most studies deal only with one cooperative behaviour, even though some organisms perform two or more cooperative behaviours. The social amoeba Dictyostelium discoideum performs two cooperative behaviours in starvation: fruiting body formation and macrocyst formation. Here, we constructed a model that couples these two behaviours, and we found that the two behaviours are maintained because of the emergence of cyclic dominance, although cooperation cannot evolve if only either of the two behaviours is performed. The common chemoattractant cyclic adenosine 3′,5′-monophosphate (cAMP) is used in both fruiting body formation and macrocyst formation, providing a biological context for this coupling. Cyclic dominance emerges regardless of the existence of mating types or spatial structure in the model. In addition, cooperation can re-emerge in the population even after it goes extinct. These results indicate that the two cooperative behaviours of the social amoeba are maintained because of the common chemical signal that underlies both fruiting body formation and macrocyst formation. We demonstrate the importance of coupling multiple games when the underlying behaviours are associated with one another.

2018 ◽  
Author(s):  
Shota Shibasaki ◽  
Masakazu Shimada

AbstractEvolution of cooperation has been one of the most important problems in sociobiology, and many researchers have revealed mechanisms that can facilitate the evolution of cooperation. However, most studies deal only with one cooperative behaviour, even though some organisms perform two or more cooperative behaviours. The social amoebaDictyostelium discoideumperforms two cooperative behaviours in starvation: fruiting body formation and macrocyst formation. Here, we constructed a model that couples these two behaviours, and we found that the two behaviours are maintained due to the emergence of cyclic dominance, although cooperation cannot evolve if only either of the two behaviours is performed. The common chemoattractant cyclic AMP is used in both fruiting body formation and macrocyst formation, providing a biological context for this coupling. Cyclic dominance emerges regardless of the existence of mating types or spatial structure in the model. In addition, cooperation can re-emerge in the population even after it goes extinct. These results indicate that the two cooperative behaviours of the social amoeba are maintained due to the common chemical signal that underlies both fruiting body formation and macrocyst formation. We demonstrate the importance of coupling multiple games when the underlying behaviours are associated with one another.


2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 371-382
Author(s):  
James M. Medina ◽  
P.M. Shreenidhi ◽  
Tyler J. Larsen ◽  
David C. Queller ◽  
Joan E. Strassmann

The social amoeba Dictyostelium discoideum has provided considerable insight into the evolution of cooperation and conflict. Under starvation, D. discoideum amoebas cooperate to form a fruiting body comprised of hardy spores atop a stalk. The stalk development is altruistic because stalk cells die to aid spore dispersal. The high relatedness of cells in fruiting bodies in nature implies that this altruism often benefits relatives. However, since the fruiting body forms through aggregation there is potential for non-relatives to join the aggregate and create conflict over spore and stalk fates. Cheating is common in chimeras of social amoebas, where one genotype often takes advantage of the other and makes more spores. This social conflict is a significant force in nature as indicated by rapid rates of adaptive evolution in genes involved in cheating and its resistance. However, cheating can be prevented by high relatedness, allorecognition via tgr genes, pleiotropy and evolved resistance. Future avenues for the study of cooperation and conflict in D. discoideum include the sexual cycle as well as the relationship between D. discoideum and its bacterial symbionts. D. discoideum’s tractability in the laboratory as well as its uncommon mode of aggregative multicellularity have established it as a promising model for future studies of cooperation and conflict.


2005 ◽  
Vol 187 (24) ◽  
pp. 8537-8541 ◽  
Author(s):  
Toshiyuki Ueki ◽  
Chun-Ying Xu ◽  
Sumiko Inouye

ABSTRACT A new sigma factor, SigF, was identified from the social and developmental bacterium Myxococcus xanthus. SigF is required for fruiting body formation during development as well as social motility during vegetative growth. Analysis of gene expression indicates that it is possible that the sigF gene is involved in regulation of an unidentified gene for social motility.


2006 ◽  
Vol 61 (5) ◽  
pp. 1283-1293 ◽  
Author(s):  
Pamela J. Bonner ◽  
Wesley P. Black ◽  
Zhaomin Yang ◽  
Lawrence J. Shimkets

1995 ◽  
Vol 33 (3) ◽  
pp. 169-174 ◽  
Author(s):  
Kazunari INABA ◽  
Yoshinori TAKANO ◽  
Yoshikazu MAYUZUMI ◽  
Toshirou MITSUNAGA

Development ◽  
1976 ◽  
Vol 35 (2) ◽  
pp. 323-333
Author(s):  
D. J. Watts ◽  
T. E. Treffry

Myxamoebae of Dictyostelium discoideum were allowed to develop on cellulose acetate filters, and specimens taken at various stages of fruiting body formation were prepared for study by scanning electron microscopy. In the immature fruiting body where the mass of pre-spore cells has just been lifted off the substratum by the developing stalk, the pre-spore cells are irregular in shape and are similar in appearance to cells in aggregates at earlier stages of development. As the stalk lengthens, the pre-spore cells gradually separate from one another and become rounded and elongate, but mature spores are not visible until the fruiting body reaches its maximum height. It is concluded that, contrary to previous reports, spore maturation is a slow process and is not completed until the sorus becomes pigmented. The mature stalk is surrounded by a smooth cellulose sheath but this does not envelop the cells of the basal disc, which remain discrete. The fruiting body is enclosed in a slime sheath and this may be important in holding together the mass of spores.


Sign in / Sign up

Export Citation Format

Share Document