scholarly journals Shifts along the parasite–mutualist continuum are opposed by fundamental trade-offs

2019 ◽  
Vol 286 (1900) ◽  
pp. 20190236 ◽  
Author(s):  
Andrew C. Matthews ◽  
Lauri Mikonranta ◽  
Ben Raymond

Theory suggests that symbionts can readily evolve more parasitic or mutualistic strategies with respect to hosts. However, many symbionts have stable interactions with hosts that improve nutrient assimilation or confer protection from pathogens. We explored the potential for evolution of increased parasitism or decreased parasitism and mutualism in a natural gut symbiosis between larvae of Plutella xylostella and the microbe Enterobacter cloacae. We focused on interactions with the pathogen, Bacillus thuringiensis : selecting for parasitism in terms of facilitating pathogen infection, or increased mutualism in terms of host protection. Selection for parasitism led to symbionts increasing pathogen-induced mortality but reduced their competitive ability with pathogens and their in vitro growth rates. Symbionts did not evolve to confer protection from pathogens. However, several lineages evolved reduced parasitism, primarily in terms of moderating impacts on host growth, potentially because prudence pays dividends through increased host size. Overall, the evolution of increased parasitism was achievable but was opposed by trade-offs likely to reduce fitness. The evolution of protection may not have occurred because suppressing growth of B. thuringiensis in the gut might provide only weak protection or because evolution towards protective interactions was opposed by the loss of competitive fitness in symbionts.

2008 ◽  
Vol 98 (3) ◽  
pp. 317-322 ◽  
Author(s):  
V. Caron ◽  
J.H. Myers

AbstractDevelopment of resistance to insecticides has generally been associated with fitness costs that may be magnified under challenging conditions. Lepidopterans which are resistant to the biopesticide Bacillus thuringiensis subsp. kurstaki (Btk) have been shown to have reduced fitness, such as lower survival when subjected to overwintering stress. Recently, resistance to Btk has been found in some populations of Trichoplusia ni Hübner in greenhouses in British Columbia. This situation provides an opportunity to investigate potential trade-offs between overwintering survival and insecticide resistance in a major pest species. Here, we assess the survival and eventual fecundity of Btk resistant and susceptible T. ni pupae exposed to cool temperatures. Contrary to our expectations, resistant T. ni had higher overwintering survival than susceptible individuals. This is the first account of a potential advantage associated with Btk resistance. Resistant and susceptible moths had reduced fecundity and smaller progeny after cold exposure compared to controls, and this may counteract the survival advantage. Nevertheless, it seems unlikely that this is sufficient to select out the resistant phenotype in the presence of strong selection for resistance and in the absence of immigration of susceptible moths. The appearance of resistance without evidence of a trade-off in overwintering survival presents a major challenge to management in production greenhouses.


1992 ◽  
Vol 75 (4) ◽  
pp. 738-741 ◽  
Author(s):  
Marietta Sue Brady ◽  
Stanley E Katz

Abstract A method using a gram-positive and a gram-negative organism was used to investigate the selection for resistant populations after exposure to residue levels of 7 antibiotics and 1 antimicrobial. The organisms were exposed to individual compounds and combinations of 3 compounds for 14 days. The changes in minimum inhibitory concentration (MIC) of a panel of 8 antibiotics and 1 antimicrobial were used as the measure of resistance development/selection. For Staphylococcus aureus ATCC 9144, exposure to residue levels of oxytetracycline, tylosin, penicillin, and virginiamycin resulted in an increased MIC of the compound itself; most individual residues did not result in increased cross-resistance. With combinations of residues, 13 of 45 determinations resulted in significant increases in MIC. Enterobacter cloacae B520, which was much less sensitive to 4 of 9 markers, showed MIC increases only for tylosin and the combination of neomycin-sulfamethazine-oxytetracycline. The results indicate an interaction among residue levels of antibiotics in selection for resistance.


Author(s):  
Mohamed NF Shaheen ◽  
Neveen M Rizk ◽  
Abdou K Allayeh ◽  
Samy M Abdelhamid ◽  
Elmahdy ME Ibrahim

2006 ◽  
Vol 54 (3) ◽  
pp. 351-358 ◽  
Author(s):  
P. Pepó

Plant regeneration via tissue culture is becoming increasingly more common in monocots such as maize (Zea mays L.). Pollen (gametophytic) selection for resistance to aflatoxin in maize can greatly facilitate recurrent selection and the screening of germplasm for resistance at much less cost and in a shorter time than field testing. In vivo and in vitro techniques have been integrated in maize breeding programmes to obtain desirable agronomic attributes, enhance the genes responsible for them and speed up the breeding process. The efficiency of anther and tissue cultures in maize and wheat has reached the stage where they can be used in breeding programmes to some extent and many new cultivars produced by genetic manipulation have now reached the market.


Crop Science ◽  
1986 ◽  
Vol 26 (6) ◽  
pp. 1123-1126 ◽  
Author(s):  
N. J. Ehlke ◽  
M. D. Casler ◽  
P. N. Drolsom ◽  
J. S. Shenk

2014 ◽  
Vol 81 (1) ◽  
pp. 130-138 ◽  
Author(s):  
James Kirby ◽  
Minobu Nishimoto ◽  
Ruthie W. N. Chow ◽  
Edward E. K. Baidoo ◽  
George Wang ◽  
...  

ABSTRACTTerpene synthesis in the majority of bacterial species, together with plant plastids, takes place via the 1-deoxy-d-xylulose 5-phosphate (DXP) pathway. The first step of this pathway involves the condensation of pyruvate and glyceraldehyde 3-phosphate by DXP synthase (Dxs), with one-sixth of the carbon lost as CO2. A hypothetical novel route from a pentose phosphate to DXP (nDXP) could enable a more direct pathway from C5sugars to terpenes and also circumvent regulatory mechanisms that control Dxs, but there is no enzyme known that can convert a sugar into its 1-deoxy equivalent. Employing a selection for complementation of adxsdeletion inEscherichia coligrown on xylose as the sole carbon source, we uncovered two candidate nDXP genes. Complementation was achieved either via overexpression of the wild-typeE. coliyajOgene, annotated as a putative xylose reductase, or via various mutations in the nativeribBgene.In vitroanalysis performed with purified YajO and mutant RibB proteins revealed that DXP was synthesized in both cases from ribulose 5-phosphate (Ru5P). We demonstrate the utility of these genes for microbial terpene biosynthesis by engineering the DXP pathway inE. colifor production of the sesquiterpene bisabolene, a candidate biodiesel. To further improve flux into the pathway from Ru5P, nDXP enzymes were expressed as fusions to DXP reductase (Dxr), the second enzyme in the DXP pathway. Expression of a Dxr-RibB(G108S) fusion improved bisabolene titers more than 4-fold and alleviated accumulation of intracellular DXP.


2009 ◽  
Vol 75 (16) ◽  
pp. 5237-5243 ◽  
Author(s):  
Shangling Fang ◽  
Li Wang ◽  
Wei Guo ◽  
Xia Zhang ◽  
Donghai Peng ◽  
...  

ABSTRACT Bacillus thuringiensis has been used as a bioinsecticide to control agricultural insects. Bacillus cereus group genomes were found to have a Bacillus enhancin-like (bel) gene, encoding a peptide with 20 to 30% identity to viral enhancin protein, which can enhance viral infection by degradation of the peritrophic matrix (PM) of the insect midgut. In this study, the bel gene was found to have an activity similar to that of the viral enhancin gene. A bel knockout mutant was constructed by using a plasmid-free B. thuringiensis derivative, BMB171. The 50% lethal concentrations of this mutant plus the cry1Ac insecticidal protein gene were about 5.8-fold higher than those of the BMB171 strain. When purified Bel was mixed with the Cry1Ac protein and fed to Helicoverpa armigera larvae, 3 μg/ml Cry1Ac alone induced 34.2% mortality. Meanwhile, the mortality rate rose to 74.4% when the same amount of Cry1Ac was mixed with 0.8 μg/ml of Bel. Microscopic observation showed a significant disruption detected on the midgut PM of H. armigera larvae after they were fed Bel. In vitro degradation assays showed that Bel digested the intestinal mucin (IIM) of Trichoplusia ni and H. armigera larvae to various degrading products, similar to findings for viral enhancin. These results imply Bel toxicity enhancement depends on the destruction of midgut PM and IIM, similar to the case with viral enhancin. This discovery showed that Bel has the potential to enhance insecticidal activity of B. thuringiensis-based biopesticides and transgenic crops.


Sign in / Sign up

Export Citation Format

Share Document