A molecular analysis reveals hidden species diversity within the current concept of Russula maculata (Russulaceae, Basidiomycota)

Phytotaxa ◽  
2016 ◽  
Vol 270 (2) ◽  
pp. 71 ◽  
Author(s):  
SLAVOMÍR ADAMČÍK ◽  
MIROSLAV CABOŇ ◽  
URSULA EBERHARDT ◽  
MALKA SABA ◽  
FELIX HAMPE ◽  
...  

The current generally accepted concept of Russula maculata defines the species by yellow-brownish spots on the basidiomata, an acrid taste, a yellow spore print and a red pileus. This concept was tested using collections originating from various geographical areas mainly in Europe. Analyses of the ITS region suggested that there were three species within this broad concept. One of them, R. maculata, was identified based on the sequence from the epitype. Two other species, R. nympharum and R. sp., are described here as newly identified species. The European species R. maculata and R. nympharum grow in deciduous forests, are similar in their field aspect and are distinctly different in micro-morphological characteristics of spores, pleurocystidia and pileipellis. An Asian species, R. sp., is associated with pine and has smaller basidiomata and spores. These three species form the R. maculata complex and represent the sister clade to the R. globispora complex. This clade consists of species also characterized by a yellow-brownish context discolouration but with a different type of spore ornamentation. All of the other tested species had an acrid taste and yellow spore print but did not have a conspicuous yellow-brownish context discolouration and were placed in various unrelated clades.

Phytotaxa ◽  
2017 ◽  
Vol 321 (1) ◽  
pp. 139 ◽  
Author(s):  
JUN-QING YAN ◽  
TOLGOR BAU

Four species of Psathyrella—P. subspadiceogrisea sp. nov., P. boreifasciculata, P. gordonii, P. senex were discovered in northeast China. P. subspadiceogrisea is described as new from Changbai Mountain; the other three species are recorded in China for the first time. The specimens were identified based on morphological characteristics and molecular analysis of ITS sequences. Detailed morphological descriptions, line drawings and photographs are presented.


2013 ◽  
Vol 29 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Dariusz L. Szlachetko ◽  
Piotr Tukałło ◽  
Joanna Mytnik-Ejsmont ◽  
Elżbieta Grochocka

Abstract Results of molecular analysis compared with morphological studies were used for reclassification of the Angraecumalliance (Orchidaceae). For the purpose of this study we sequenced the ITS region (ITS1-5.8S-ITS2) of nrDNA representing nuclear genome and the plastid region trnL-F (including intron of trnL gene and trnL-trnF intergenic spacer). The ITS matrix includes 97 samples representing 86 species and the trnL-F matrix includes 94 samples representing 86 species. We focus mainly on the genus Angraecum, however the other genera of Angraecinae are also included (Aeranthes, Campylocentrum, Dendrophylax, Cryptopus, Calyptrochilum, Lemurorchis, Jumellea, Neobathiea, Oeonia, Oeoniella, Sobennikoffia). Additional 43 sequences, including an outgroup (Polystachya modesta) and other representatives of the subtribes Aeridinae (Aerides) and Aerangidinae (Aerangis, Angraecopsis, Erasanthe, Solenangis), were obtained from NCBI resources. Bayesian analysis using MrBayes 3.1.2 on the combined ITS/trnL-F matrix were performed. The monophyly of Angraecinae with an inclusion of Aerangidinae is highly supported by both methods (93 BP/100 PP). The Angraecoid taxa formed two well supported clades, namely clade I (89 BP/100 PP) and clade II (84 BP/100 PP). New classification based on both molecular and classical taxonomy studies is presented including a key to the genera. The subtribe Angraecinae includes 36 genera, 18 of them, included within Angraecum by different authors so far, are treated here. Five new genera are described: Eichlerangraecum, Hermansia, Lesliegraecum, Pectianriella and Rudolfangraecum. Ten sections of Angraecum are raised to the generic status.


2021 ◽  
Vol 42 (2) ◽  
pp. 192-202
Author(s):  
K.B. Palanna ◽  
◽  
S. Basavaraj ◽  
K.R. Shreenivasa ◽  
T. Narendrappa ◽  
...  

Aim: The present study was undertaken to study the morphological and molecular diversity of Ganoderma spp. causing foot rot of arecanut in dry tracts of Southern Karnataka. Methodology: A total of 20 samples isolated from diseased areca palms in three districts of Karnataka were identified based on morphological and molecular characteristics. Qualitative data of cultural characteristics were transformed into code and a binary matrix was generated. Total genomic DNA was isolated and ITS region was amplified using universal primers ITS1 and ITS4. PCR amplicon was directly sequenced and phylogenetic analysis was carried out. Results: The dendrogram generated from the cultural morphological characteristics showed clear variations among Ganoderma isolates causing foot rot. DNA amplification of Ganoderma isolates with fungal universal primers (ITS1 and ITS4) was observed at 650 bp in all isolates tested. Taxonomic correlation of isolates upon NCBI web proved that the isolates were genetically related to Ganoderma spp. with 89-99.49 per cent identity and confirmed the taxonomic identity of isolates used in this study. Interpretation: Phylogenetic analysis of arecanut isolates of southern Karnataka are distinct as evidenced by forming separate cluster. Based on gene homology, G. ryvardenni and G. casuarinicola are new species reported as causal agent of foot rot in arecanut from Karnataka. The ITS gene sequences of four isolates viz., AG3 (MN 784436), AG4 (MN 784437), AG11 (MN 784438), and AG20 (MN 78449) were deposited in NCBI gene bank. Key words: Arecanut, Foot rot, Ganoderma, Phylogeny, Species diversity


Author(s):  
I. R. Khuzina ◽  
V. N. Komarov

The paper considers a point of view, based on the conception of the broad understanding of taxons. According to this point of view, rhyncholites of the subgenus Dentatobeccus and Microbeccus are accepted to be synonymous with the genus Rhynchoteuthis, and subgenus Romanovichella is considered to be synonymous with the genus Palaeoteuthis. The criteria, exercising influence on the different approaches to the classification of rhyncholites, have been analyzed (such as age and individual variability, sexual dimorphism, pathological and teratological features, degree of disintegration of material), underestimation of which can lead to inaccuracy. Divestment of the subgenuses Dentatobeccus, Microbeccus and Romanovichella, possessing very bright morphological characteristics, to have an independent status and denomination to their synonyms, has been noted to be unjustified. An artificial system (any suggested variant) with all its minuses is a single probable system for rhyncholites. The main criteria, minimizing its negative sides and proving the separation of the new taxon, is an available mass-scale material. The narrow understanding of the genus, used in sensible limits, has been underlined to simplify the problem of the passing the view about the genus to the other investigators and recognition of rhyncholites for the practical tasks.


Paleobiology ◽  
2021 ◽  
Vol 47 (2) ◽  
pp. 171-177
Author(s):  
James C. Lamsdell ◽  
Curtis R. Congreve

The burgeoning field of phylogenetic paleoecology (Lamsdell et al. 2017) represents a synthesis of the related but differently focused fields of macroecology (Brown 1995) and macroevolution (Stanley 1975). Through a combination of the data and methods of both disciplines, phylogenetic paleoecology leverages phylogenetic theory and quantitative paleoecology to explain the temporal and spatial variation in species diversity, distribution, and disparity. Phylogenetic paleoecology is ideally situated to elucidate many fundamental issues in evolutionary biology, including the generation of new phenotypes and occupation of previously unexploited environments; the nature of relationships among character change, ecology, and evolutionary rates; determinants of the geographic distribution of species and clades; and the underlying phylogenetic signal of ecological selectivity in extinctions and radiations. This is because phylogenetic paleoecology explicitly recognizes and incorporates the quasi-independent nature of evolutionary and ecological data as expressed in the dual biological hierarchies (Eldredge and Salthe 1984; Congreve et al. 2018; Fig. 1), incorporating both as covarying factors rather than focusing on one and treating the other as error within the dataset.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1662-1662 ◽  
Author(s):  
Q. R. Bai ◽  
S. Han ◽  
Y. Y. Xie ◽  
J. Gao ◽  
Y. Li

Veronica sibirica (Veronicastrum sibiricum) is an erect perennial herb, an ornamental, and a traditional Chinese medicine plant distributed mostly in northeastern, northern, and northwestern China. It has dehumidifying and detoxifying properties, and is mainly used for the treatment of cold, sore throat, mumps, rheumatism, and insect bites (4). In June 2008 through 2012, leaf spots of V. sibirica were observed in the Medicinal Herb Garden of Jilin Agricultural University (43°48′N, 125°23′E) and the medicinal plantations of Antu County (43°6′N, 128°53′E), Jilin Province. Leaf spots were amphigenous, subcircular, angular-irregular, brown, and 1 to 10 mm in diameter; they occasionally merged into a larger spot with an indefinite margin or with a pale center and dark border. Pale conidiomata were hypophyllous and scattered on the spots. The conidiophores were 100 to 400 μm high and clustered together to form synnemata 20 to 50 μm in diameter, which splayed out apically and formed loose to dense capitula. Conidiophores occasionally emerged through the stomata individually and produced conidia on the surface of the infected leaves. The conidiogenous cell terminal was geniculate-sinuous with somewhat thickened and darkened conidial scars. Conidia were solitary or catenulate, ellipsoid-ovoid or subcylindric-fusiform, hyaline and spinulose, 4.01 to 7.18 × 11.16 to 20.62 μm with obtuse to somewhat attenuated ends, and slightly thickened, darkened hila. Six isolates were obtained from necrotic tissue of leaf spots and cultured on potato dextrose agar at 25°C. After incubation for 14 days, colony surfaces were white to pinkish. The colony diameter increased by 12 mm after 21 days' incubation. Hyphae were hyaline, septate, and branched. Conidiophores grew individually or fascicularly. The symptoms and morphological characteristics were consistent with previous descriptions (1,2), and the fungus was identified as Phacellium veronicae (Pass.) (U. Braun 1990). The internal transcribed spacer (ITS) region of the nuclear rDNA was amplified using primers ITS4/ITS5 (3). The ITS was identical among all six isolates (HE995799) and 98% identical to that of P. veronicae (JQ920427, HQ690097). Pathogenicity was confirmed by spraying five 1-year-old V. sibirica seedlings with a conidial suspension (106 conidia/ml) of each isolate and five seedlings with sterile water as a control treatment. Plants were grown in the greenhouse at 20 to 25°C and were covered with plastic bags to maintain humidity on the foliage for 72 h. After 15 days, the same symptoms appeared on the leaves as described earlier for the field-grown plants; the control plants remained healthy. The same fungus was reisolated from the leaf spots of inoculated plants. Currently, the economic importance of this disease is limited, but it may become a more significant problem, as the cultivated area of V. sibirica is increasing. To our knowledge, although P. veronicae was recorded on the other species of Veronica (V. austriaca, V. chamaedrys, V. grandis, V. longifolia, V. paniculata, and V. spicata ssp. incana) in Europe (Germany, Denmark, Ireland, Romania) and V. wormskjoldii in North America (Canada) (1), this is the first report of V. sibirica leaf spots caused by P. veronicae in the world, and it is a new disease in China. References: (1) U. Braun. A monograph of Cercosporella, Ramularia and allied genera (phytopathogenic Hyphomycetes) 2, IHW-Verlag, Germany, 1998. (2) U. Braun. Nova Hedwigia 50:499, 1990. (3) D. E. L. Cooke et al. Mycol. Res. 101:667, 1997. (4) Jiangsu New Medical College. Dictionary of Chinese Materia Medica. Shanghai: Shanghai Scientific and Technical Publishers, China, 1977.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
A. L. Vu ◽  
M. M. Dee ◽  
J. Zale ◽  
K. D. Gwinn ◽  
B. H. Ownley

Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.


Botany ◽  
2012 ◽  
Vol 90 (9) ◽  
pp. 866-875 ◽  
Author(s):  
Deana L. Baucom ◽  
Marie Romero ◽  
Robert Belfon ◽  
Rebecca Creamer

New species of Undifilum , from locoweeds Astragalus lentiginosus Vitman and Astragalus mollissimus Torr., are described using morphological characteristics and molecular phylogenetic analyses as Undifilum fulvum Baucom & Creamer sp. nov. and Undifilum cinereum Baucom & Creamer sp. nov. Fungi were isolated from dried plants of A. lentiginosus var. araneosus , diphysus , lentiginosus , and wahweapensis collected from Arizona, Oregon, and Utah, USA, and A. mollissimus var. biglovii , earleii , and mollissimus collected from New Mexico, Oklahoma, and Texas, USA. Endophytic fungi from Astragalus locoweeds were compared to Undifilum oxytropis isolates obtained from dried plant material of Oxytropis lamberteii from New Mexico and Oxytropis sericea from Arizona, Colorado, New Mexico, Utah, and Wyoming. Extremely slow growth in vitro was observed for all, and conidia, if present, were ellipsoid with transverse septa. However, in vitro color, growth on four different media, and conidium size differed between fungi from Astragalus spp. and U. oxytropis. Neighbor-joining analyses of internal transcribed spacer (ITS) region and glyceraldehyde-3-phosphate dehydrogenase (GPD) gene sequences revealed that U. fulvum and U. cinereum formed a clade distinct from U. oxytropis. This was supported by neighbor-joining analyses of results generated from random amplified polymorphic DNA (RAPD) fragments using two different primers.


Sign in / Sign up

Export Citation Format

Share Document