scholarly journals Craniofacial development illuminates the evolution of nightbirds (Strisores)

2021 ◽  
Vol 288 (1948) ◽  
Author(s):  
Guillermo Navalón ◽  
Sergio M. Nebreda ◽  
Jen A. Bright ◽  
Matteo Fabbri ◽  
Roger B. J. Benson ◽  
...  

Evolutionary variation in ontogeny played a central role in the origin of the avian skull. However, its influence in subsequent bird evolution is largely unexplored. We assess the links between ontogenetic and evolutionary variation of skull morphology in Strisores (nightbirds). Nightbirds span an exceptional range of ecologies, sizes, life-history traits and craniofacial morphologies constituting an ideal test for evo-devo hypotheses of avian craniofacial evolution. These morphologies include superficially ‘juvenile-like’ broad, flat skulls with short rostra and large orbits in swifts, nightjars and allied lineages, and the elongate, narrow rostra and globular skulls of hummingbirds. Here, we show that nightbird skulls undergo large ontogenetic shape changes that differ strongly from widespread avian patterns. While the superficially juvenile-like skull morphology of many adult nightbirds results from convergent evolution, rather than paedomorphosis, the divergent cranial morphology of hummingbirds originates from an evolutionary reversal to a more typical avian ontogenetic trajectory combined with accelerated ontogenetic shape change. Our findings underscore the evolutionary lability of cranial growth and development in birds, and the underappreciated role of this aspect of phenotypic variability in the macroevolutionary diversification of the amniote skull.

Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3786-3792 ◽  
Author(s):  
Hervé Falet ◽  
Kurt L. Barkalow ◽  
Vadim I. Pivniouk ◽  
Michael J. Barnes ◽  
Raif S. Geha ◽  
...  

Abstract How platelet shape change initiated by a collagen-related peptide (CRP) specific for the GPVI/FcRγ-chain complex (GPVI/FcRγ-chain) is coupled to SLP-76, phosphoinositide (PI) 3-kinase, and gelsolin is reported. As shown by video microscopy, platelets rapidly round and grow dynamic filopodial projections that rotate around the periphery of the cell after they contact a CRP-coated surface. Lamellae subsequently spread between the projections. All the actin-driven shape changes require SLP-76 expression. SLP-76 is essential for the Ca++mobilization induced by CRP, whereas PI 3-kinase only modulates it. The extension of lamellae requires net actin assembly and an exposure of actin filament barbed ends downstream of PI 3-kinase. Gelsolin expression is also required for the extension of lamellae, but not for the formation of filopodia. Altogether, the data describe the role of SLP-76 in the platelet activation initiated by GPVI/FcRγ-chain and the roles of PI 3-kinase and gelsolin in lamellae spreading.


Blood ◽  
2000 ◽  
Vol 96 (12) ◽  
pp. 3786-3792 ◽  
Author(s):  
Hervé Falet ◽  
Kurt L. Barkalow ◽  
Vadim I. Pivniouk ◽  
Michael J. Barnes ◽  
Raif S. Geha ◽  
...  

How platelet shape change initiated by a collagen-related peptide (CRP) specific for the GPVI/FcRγ-chain complex (GPVI/FcRγ-chain) is coupled to SLP-76, phosphoinositide (PI) 3-kinase, and gelsolin is reported. As shown by video microscopy, platelets rapidly round and grow dynamic filopodial projections that rotate around the periphery of the cell after they contact a CRP-coated surface. Lamellae subsequently spread between the projections. All the actin-driven shape changes require SLP-76 expression. SLP-76 is essential for the Ca++mobilization induced by CRP, whereas PI 3-kinase only modulates it. The extension of lamellae requires net actin assembly and an exposure of actin filament barbed ends downstream of PI 3-kinase. Gelsolin expression is also required for the extension of lamellae, but not for the formation of filopodia. Altogether, the data describe the role of SLP-76 in the platelet activation initiated by GPVI/FcRγ-chain and the roles of PI 3-kinase and gelsolin in lamellae spreading.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252780
Author(s):  
Peter C. Searle ◽  
Margaret Mercer ◽  
Evelyn Habit ◽  
Mark C. Belk

Body and head shape among fishes both vary between environments influenced by water velocity and across ontogeny. Although the shape changes associated with variation in average water velocity and ontogeny are well documented, few studies have tested for the interaction between these two variables (i.e., does ontogenetic shape variation differ between velocity environments). We use geometric morphometrics to characterize shape differences in Trichomycterus areolatus, a freshwater catfish found in high and low-velocity environments in Chile. We identify a significant interaction between velocity environment and body size (i.e., ontogeny). Ontogenetic patterns of shape change are consistent with other studies, but velocity environment differentially affects the ontogenetic trajectory of shape development in T. areolatus. Shape change over ontogeny appears more constrained in high-velocity environments compared to low-velocity environments.


Author(s):  
Hideo Hayashi ◽  
Yoshikazu Hirai ◽  
John T. Penniston

Spectrin is a membrane associated protein most of which properties have been tentatively elucidated. A main role of the protein has been assumed to give a supporting structure to inside of the membrane. As reported previously, however, the isolated spectrin molecule underwent self assemble to form such as fibrous, meshwork, dispersed or aggregated arrangements depending upon the buffer suspended and was suggested to play an active role in the membrane conformational changes. In this study, the role of spectrin and actin was examined in terms of the molecular arrangements on the erythrocyte membrane surface with correlation to the functional states of the ghosts.Human erythrocyte ghosts were prepared from either freshly drawn or stocked bank blood by the method of Dodge et al with a slight modification as described before. Anti-spectrin antibody was raised against rabbit by injection of purified spectrin and partially purified.


2021 ◽  
Vol 41 (01) ◽  
pp. 014-021
Author(s):  
Markus Bender ◽  
Raghavendra Palankar

AbstractPlatelet activation and aggregation are essential to limit blood loss at sites of vascular injury but may also lead to occlusion of diseased vessels. The platelet cytoskeleton is a critical component for proper hemostatic function. Platelets change their shape after activation and their contractile machinery mediates thrombus stabilization and clot retraction. In vitro studies have shown that platelets, which come into contact with proteins such as fibrinogen, spread and first form filopodia and then lamellipodia, the latter being plate-like protrusions with branched actin filaments. However, the role of platelet lamellipodia in hemostasis and thrombus formation has been unclear until recently. This short review will briefly summarize the recent findings on the contribution of the actin cytoskeleton and lamellipodial structures to platelet function.


Rheumatology ◽  
2021 ◽  
Author(s):  
Marco Castori

Abstract Joint hypermobility is a common characteristic in humans. Its non-casual association with various musculoskeletal complaints is known and currently defined “the spectrum”. It includes hypermobile Ehlers–Danlos syndrome (hEDS) and hypermobility spectrum disorders (HSD). hEDS is recognized by a set of descriptive criteria, while HSD is the background diagnosis for individuals not fulfilling these criteria. Little is known about the aetiopathogenesis of the spectrum. It may be interpreted as a complex trait according to the integration model. Particularly, the spectrum is common in the general population, affects morphology, presents extreme clinical variability and is characterized by marked sex bias without a clear Mendelian or hormonal explanation. Joint hypermobility and the other hEDS systemic criteria are intended as qualitative derivatives of continuous traits of normal morphological variability. The need for a minimum set of criteria for hEDS diagnosis implies a tendency to co-vary of these underlying continuous traits. In evolutionary biology, such a co-variation (i.e. integration) is driven by multiple forces, including genetic, developmental, functional and environmental/acquired interactors. The aetiopathogenesis of the spectrum may be resolved by a deeper understanding of phenotypic variability, which superimposes on normal morphological variability.


Blood ◽  
1992 ◽  
Vol 80 (11) ◽  
pp. 2911-2919 ◽  
Author(s):  
P Kreienbuhl ◽  
H Keller ◽  
V Niggli

Abstract The phosphatase inhibitors okadaic acid and calyculin A were found to elicit or to modify several neutrophil responses, suggesting that dephosphorylation plays a regulatory role. The concentrations of okadaic acid (> or = 1 mumol/L) that were effective on neutrophil functions (shape changes and marginal stimulation of pinocytosis) were shown to stimulate the incorporation of 32PO4 into many neutrophil proteins several-fold. Calyculin A was effective at 50-fold lower concentrations. In the presence of the inhibitors, the cells exhibited a nonpolar shape and the polarization response induced by chemotactic peptide was inhibited. Both phosphatase inhibitors also induced the association of F-actin with the cell membrane. A steady-state phosphatase activity is thus involved in maintaining shape and F-actin localization of resting cells. Inhibitors alone had no significant effect on the amount of cytoskeleton-associated actin. The increase in cytoskeletal actin observed at 30 minutes of stimulation with phorbol ester or 5 to 30 minutes of stimulation with chemotactic peptide, however, was abolished by okadaic acid or calyculin A, suggesting an important role of a phosphatase. In contrast, the early increase in cytoskeleton-associated actin observed at 1 minute of stimulation with peptide was not affected. This finding indicates that the increased association of actin with the cytoskeleton in the early and the later stages of neutrophil activation may be mediated by different signalling pathways.


2008 ◽  
Vol 182 (2) ◽  
pp. 221-223 ◽  
Author(s):  
Iiro Taneli Helenius ◽  
Greg J. Beitel

Tubular organs are essential for life, but lumen formation in nonepithelial tissues such as the vascular system or heart is poorly understood. Two studies in this issue (Medioni, C., M. Astier, M. Zmojdzian, K. Jagla, and M. Sémériva. 2008. J. Cell Biol. 182:249–261; Santiago-Martínez, E., N.H. Soplop, R. Patel, and S.G. Kramer. 2008. J. Cell Biol. 182:241–248) reveal unexpected roles for the Slit–Robo signaling system during Drosophila melanogaster heart morphogenesis. In cardioblasts, Slit and Robo modulate the cell shape changes and domains of E-cadherin–based adhesion that drive lumen formation. Furthermore, in contrast to the well-known paracrine role of Slit and Robo in guiding cell migrations, here Slit and Robo may act by autocrine signaling. In addition, the two groups demonstrate that heart lumen formation is even more distinct from typical epithelial tubulogenesis mechanisms because the heart lumen is bounded by membrane surfaces that have basal rather than apical attributes. As the D. melanogaster cardioblasts are thought to have significant evolutionary similarity to vertebrate endothelial and cardiac lineages, these findings are likely to provide insights into mechanisms of vertebrate heart and vascular morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document