A discussion concerning the floor of the northwest Indian Ocean - Physciography of the Indian Ocean

As a result of the International Indian Ocean Expedition, the bottom of the Indian Ocean is now one of the best known areas of the ocean floor. The Mid-Indian Ocean Ridge, a rugged mountain range, lies in the centre of the Indian Ocean. North-northeast trending fractures offset the axis of the ridge. In the Arabian Sea these fractures are right lateral; in the southwest Indian Ocean they are left lateral. Displacements range from a few miles* to over 200 miles. The northeast Arabian Sea and the Bay of Bengal are occupied by huge abyssal cones built by sediments discharged from the Indo-Gangetic plain. Extensive abyssal plains lie seaward of the abyssal cones. In low latitudes smooth topography is characteristic of the continental rise, the abyssal cones, and the oceanic rises. However, near the polar front smooth c swale9 topography laps over the normally rugged Mid-Oceanic Ridge. This c swale5 smoothing appears the result of the higher organic productivity of the Antarctic seas. Microcontinents, mostly linear meridional ridges, are unique features of the Indian Ocean. These massive but smooth-surfaced blocks contrast markedly with the broad rugged Mid-Oceanic Ridge.

The floor of the Indian Ocean is dominated by (1) the seismically active Mid-Oceanic Ridge, (2) scattered linear micro-continents (mostly meridional), and (3) fracture zones (some displace the axis of the Mid-Oceanic Ridge and others parallel the micro-continents). The pattern suggests that movement along the Diamantina Fracture Zone has displaced Australia to the east relative to Broken Ridge. In the Arabian Sea north-northeast trending fracture zones have displaced the axis of the Carlsberg Ridge. The complex tectonic fabric of the Indian Ocean is difficult to explain in terms of a simple pattern of convection currents. The location and origin of the Mid-Oceanic Ridge, of oceanic rises, aseismic ridges and transcurrent fault systems must be accounted for in any hypothesis of continental displacement despite unique or exotic assumptions as to strength, viscosity or composition of the oceanic crust and mantle.


Author(s):  
Jan KOZIAR

Morgan (1968) tested the supposed Eulerian motion of lithospheric plates by calculation on a circuit around the Indian Ocean triple junction. The present analysis performed on a physical model shows that on a non-expanding Earth, the reconstructed Southwest Indian Ocean Ridge fails to close as it should according to the allegedly positive result of Morgan’s test, which is thereby shown to be in error. Wedge-shaped openings, appearing along all arms of the Indian Ocean triple junction during its reconstruction, are examples of Carey’s artifactual “gaping gores” which in general are one of the proofs of the Earth’s expansion. A global plan of plate motions based on the Eulerian principle is impossible and confirms Carey’s Arctic Paradox which is other proof of the expansion of the Earth. Space geodesy testing of expanding Earth is in fact testing of possible expansion of the plate tectonics model, not the real Earth. V-shaped openings between plates, when real, are not of Eulerian origin but are large sphenochasms in Carey’s sense caused by an expanding interior of the Earth.


Check List ◽  
2015 ◽  
Vol 11 (1) ◽  
pp. 1544 ◽  
Author(s):  
Amruta Prasade ◽  
Deepak Apte ◽  
Purushottam Kale ◽  
Otto M.P. Oliveira

The benthic ctenophore Vallicula multiformis Rankin, 1956 is recorded for the first time in the Arabian Sea, from the Gulf of Kutch, west coast of India in March 2013. This occurrence represents a remarkable extension of its geographic distribution that until now included only known the Pacific and Atlantic oceans.


2001 ◽  
Vol 7 (S2) ◽  
pp. 480-481
Author(s):  
James R. Anderson ◽  
Peter Crozier

The Indian Ocean Experiment (INDOEX) was conducted in Feb.-Mar. 1999 in a large area of the Indian Ocean, Bay of Bengal, and Arabian Sea to investigate climate forcing produced by pollutant aerosol particles being transported out of India, Pakistan, and Indochina during the Northeast (“Dry“) Monsoon2. Pollutant aerosols can be transported a thousand km or more by prevailing winds as far south as the Inter-tropical Convergence Zone (ITCZ), the convective band that separates Northern and Southern Hemisphere tropospheric air. We present here results from TEM examination of aerosol particles collected on INDOEX research flights of the NCAR C-130 aircraft.The climate forcing properties of sulfate aerosols over the oceans have long been recognized2. Sulfate and other particles scatter incoming solar radiation, reducing the amount of light (and heat) incident on the ocean surface and thus causing a cooling effect which may locally counter some of the warming effect due to greenhouse gases.


2003 ◽  
Vol 107 (3) ◽  
pp. 683-695 ◽  
Author(s):  
D. Bala Subrahamanyam ◽  
Radhika Ramachandran ◽  
K. Sen Gupta ◽  
Tuhin K. Mandal

2004 ◽  
Vol 22 (8) ◽  
pp. 2679-2691 ◽  
Author(s):  
M. V. Ramana ◽  
P. Krishnan ◽  
S. Muraleedharan Nair ◽  
P. K. Kunhikrishnan

Abstract. Spatial and temporal variability of the Marine Atmospheric Boundary Layer (MABL) height for the Indian Ocean Experiment (INDOEX) study period are examined using the data collected through Cross-chained LORAN (Long-Range Aid to Navigation) Atmospheric Sounding System (CLASS) launchings during the Northern Hemispheric winter monsoon period. This paper reports the results of the analyses of the data collected during the pre-INDOEX (1997) and the INDOEX-First Field Phase (FFP; 1998) in the latitude range 14°N to 20°S over the Arabian Sea and the Indian Ocean. Mixed layer heights are derived from thermodynamic profiles and they indicated the variability of heights ranging from 400m to 1100m during daytime depending upon the location. Mixed layer heights over the Indian Ocean are slightly higher during the INDOEX-FFP than the pre-INDOEX due to anomalous conditions prevailing during the INDOEX-FFP. The trade wind inversion height varied from 2.3km to 4.5km during the pre-INDOEX and from 0.4km to 2.5km during the INDOEX-FFP. Elevated plumes of polluted air (lofted aerosol plumes) above the marine boundary layer are observed from thermodynamic profiles of the lower troposphere during the INDOEX-FFP. These elevated plumes are examined using 5-day back trajectory analysis and show that one group of air mass travelled a long way from Saudi Arabia and Iran/Iraq through India before reaching the location of measurement, while the other air mass originates from India and the Bay of Bengal.


1975 ◽  
Vol 28 (4) ◽  
pp. 434-448
Author(s):  
H. Grosset-Grange

This study of fifteenth-century Arab sailing directions for the Indian Ocean is translated from a paper which was published in the July 1974 issue of Navigation, the Journal of the French Institute of Navigation. The spelling of modern place names has been assimilated to that of the Admiralty Charts and Sailing Directions but other Arabic names and terms have been left in the authors' approximate transliteration. Quotations from the Arabic texts are printed in italics.


2015 ◽  
Vol 8 ◽  
Author(s):  
Anil Mohapatra ◽  
Dipanjan Ray ◽  
David G. Smith

Gymnothorax prolatusis recorded for the first time from the Indian Ocean on the basis of four specimens collected in the Bay of Bengal off India and one from the Arabian Sea off Pakistan. These records extend the range of the species from Taiwan to the north-western Indian Ocean.


2020 ◽  
Author(s):  
Takeshi Izumo ◽  
Maratt Satheesan Swathi ◽  
Matthieu Lengaigne ◽  
Jérôme Vialard ◽  
Dr Ramesh Kumar

<p>A strong Low-Level Jet (LLJ), also known as the Findlater jet, develops over the Arabian Sea during the Indian summer monsoon. This jet is an essential source of moisture for monsoonal rainfall over the densely-populated Indian subcontinent and is a key contributor to the Indian Ocean oceanic productivity by sustaining the western Arabian Sea upwelling systems. The LLJ intensity fluctuates intraseasonally within the ~20- to 90-day band, in relation with the northward-propagating active and break phases of the Indian summer monsoon. Our observational analyses reveal that these large-scale regional convective perturbations  only explain about half of the intraseasonal LLJ variance, the other half being unrelated to large-scale convective perturbations over the Indian Ocean. We show that convective fluctuations in two regions outside the Indian Ocean can remotely force a LLJ intensification, four days later. Enhanced atmosphericdeep convection over the northwestern tropical Pacific yields westerly wind anomalies that propagate westward to the Arabian Sea as baroclinic atmospheric Rossby Waves. Suppressed convection over the eastern Pacific / North American monsoon region yields westerly wind anomalies that propagate eastward to the Indian Ocean as dry baroclinic equatorial Kelvin waves. Those largely independent remote influences jointly explain ~40% of the intraseasonal LLJ variance that is not related to convective perturbations over the Indian Ocean (i.e. ~20% of the total), with the northwestern Pacific contributing twice as much as the eastern Pacific. Taking into account these two remote influences should thus enhance the ability to predict the LLJ.</p><p> </p><p>Related reference: Swathi M.S, Takeshi Izumo, Matthieu Lengaigne, Jérôme Vialard and M.R. Ramesh Kumar:Remote influences on the Indian monsoon Low-Level Jet intraseasonal variations, accepted in Climate Dynamics.</p>


Sign in / Sign up

Export Citation Format

Share Document