A Discussion on solar studies with special reference to space observations - High resolution interferometric studies of the solar magnesium II doublet spectral region

The resonance lines of M gn (A = 279.55 and 280.27 nm) are just beyond the extinction limit of the Earth’s atmosphere. Because of the high cosmic abundance of magnesium, these lines are particularly important in ultraviolet astronomy and with the extension of interference spectroscopy into the far ultraviolet (Bradley 1968), sophisticated optical techniques can now be employed at these wavelengths. On the Sun, the M gn resonance lines consist of a broad absorption with a pronounced emission core similar to the H and K lines of Ca 11, but with more prominent emission and absorption features, so that the Mg 11H and K lines are much more sensitive indicators of chromospheric phenomena. The discovery (Kachalov & Yakovleva, 1962) of structure in the emission core, giving a doubly reversed profile, confirmed the similarity with CAII. The structure of the emission core was well resolved in high resolution {ca. 3 pm) echelle spectrograms obtained with a Sun-pointed rocket (Purcell, Garrett & Tousey 1963). These echelle line profiles were, however, composite ones averaged over one third of the solar disk, so that it was not possible to distinguish between profiles from quiet and active regions, or to determine centre-to-limb variations.

1970 ◽  
Vol 36 ◽  
pp. 274-276
Author(s):  
B. Bates ◽  
D. J. Bradley ◽  
C. D. McKeith ◽  
N. E. McKeith ◽  
W. M. Burton ◽  
...  

The resonance lines of Mgii occur at wavelengths (2802.7 Å, 2795.5 Å) just beyond the extinction limit of the Earth's atmosphere. At such wavelengths sophisticated optical techniques can now be employed and this fact, together with the high cosmic abundance of magnesium, makes these lines particularly important for study in UV Astronomy. In the case of the Sun, the lines consist of a broad absorption with a pronounced emission core.


2003 ◽  
Vol 209 ◽  
pp. 405-411
Author(s):  
George Sonneborn

The Far Ultraviolet Spectroscopic Explorer (FUSE)> satellite provides a unique opportunity to obtain high-resolution far-UV spectra of a wide variety of astronomical objects, including planetary nebulae. Most FUSE observations of PNe to date have concentrated on the hot central star, providing a very effective way to study the atmosphere of the central star, the surrounding nebula through the absorption features from circumstellar gas. FUSE has found evidence of hot molecular hydrogen in several planetary nebulae, including M27 and BD+30° 3639. Central star spectra also reveal new information about stellar winds, mass loss, and photospheric abundances.


1999 ◽  
Vol 32 (15) ◽  
pp. 3813-3838 ◽  
Author(s):  
H Abgrall ◽  
E Roueff ◽  
Xianming Liu ◽  
D E Shemansky ◽  
G K James

1983 ◽  
Vol 5 (2) ◽  
pp. 152-157 ◽  
Author(s):  
L. E. Cram

Two recent observational surveys of the Ca II resonance lines (Zarro and Rodgers 1983; Linsky et al. 1979) illustrate the great diversity of line profile shapes found in the spectra of cool stars. This diversity reflects a corresponding wide range in the underlying chromospheric properties of the stars. There are, however, three well-marked systematic trends in the shapes of Ca II line profiles which presumably reflect systematic trends in chromospheric properties. One of these, the Wilson-Bappu effect (Wilson and Bappu 1957), describes the strong correlation betweeen the width of the emission core (see Figure 1) and the absolute visual magnitude of the star. Despite much work, it is still not clear whether this is due primarily to systematic changes of velocity fields (e.g. Hoyle and Wilson 1958) or optical depths (e.g. Jefferies and Thomas 1959) in stellar chromospheres.


1990 ◽  
Vol 137 ◽  
pp. 219-220
Author(s):  
P.P. Petrov

Ejection and accretion of gas clouds in the vicinity of RY Tau were discovered. The existense of large scale “stellar prominences” around young stars is suggested.


2000 ◽  
Vol 176 ◽  
pp. 463-464
Author(s):  
L. Mantegazza ◽  
E. Poretti ◽  
M. Bossi ◽  
N. S. Nuñez ◽  
A. Sacchi ◽  
...  

Abstractδ Sct stars are among the most promising targets to perform ground-based asteroseismology. High resolution spectroscopy offers us a powerful technique to identify radial and nonradial pulsation modes, since we can easily detect oscillations and travelling features in the line profiles.


1991 ◽  
Vol 143 ◽  
pp. 317-317
Author(s):  
R. K. Prinja ◽  
M. J. Barlow ◽  
I. D. Howarth

We argue that easily measured, reliable estimates of terminal velocities for early-type stars are provided (1) by the central velocity asymptotically approached by narrow absorption features in unsaturated UV P Cygni profiles, and (2) by the violet limit of zero residual intensity in saturated P Cygni profiles. We use these estimators and high resolution IUE data to determine terminal velocities, v∞, for 181 O stars, 70 early B supergiants, and 35 Wolf-Rayet stars. For OB stars our values are typically 15-20% smaller than the extreme violet edge velocities, vedge, while for WR stars v∞ = 0.76vedge on average. We give new mass-loss rates for WR stars which are thermal radio emitters, taking into account our new terminal velocities and recent revisions to estimates of distances and to the mean nuclear mass per electron. We examine the relationships between v∞, the surface escape velocities, and effective temperatures.


1990 ◽  
Vol 123 ◽  
pp. 49-57
Author(s):  
J.B. Holberg

AbstractThe instrumental characteristics, observational capabilities and scientific results of the Voyager 1 and 2 ultraviolet spectrometers are reviewed. These instruments provide current and ongoing access to low resolution spectra for a wide variety of astronomical sources in the 500 to 1700 Å band. Observations of the brightest OB stars and hot subluminous stars as faint as V = 15 mag. are possible. In the EUV, at wavelengths shortward of 900 Å, several new sources have been detected and a host of potential sources ruled out. In the Far UV, particularly at wavelengths between 900 and 1200 Å, Voyager is capable of observing a wide range of stellar and non-stellar sources. Such observations can often provide a valuable complement to IUE and other data sets at longer wavelengths. The Voyager spectrometers have proved remarkably stable photon counting instruments, capable of extremely long integration times. The long integration times, relatively large field of view, and location in the outer solar system also provide an ideal platform for observations of sources of faint diffuse emission, such as nebulae and the general sky background.


2004 ◽  
Vol 202 ◽  
pp. 109-111 ◽  
Author(s):  
H. Rauer ◽  
A. Collier Cameron ◽  
J. Barnes ◽  
A. W. Harris

We investigate the prospects of detecting the presence of Na D absorption features during transits of the planet of HD209458 by means of high-resolution spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document