A Discussion on the measurement and interpretation of changes of strain in the Earth - Small earthquakes observed with local seismometer networks

Recent developments in instrumentation allow networks of radio-linked seismometers, recording on magnetic tape, to be easily established in areas of micro-earthquake activity. Observations with such networks enable the location and some of the source parameters of small earthquakes to be examined in detail. Accurate locations require adequate knowledge of the velocity structure within the area of the network, and suitable source station geometry. Given such a network, it should be possible to estimate crustal structure sufficiently accurately to give good epicentre and depth locations for small earthquakes within the network.

2020 ◽  
Vol 222 (3) ◽  
pp. 1639-1655
Author(s):  
Xin Zhang ◽  
Corinna Roy ◽  
Andrew Curtis ◽  
Andy Nowacki ◽  
Brian Baptie

SUMMARY Seismic body wave traveltime tomography and surface wave dispersion tomography have been used widely to characterize earthquakes and to study the subsurface structure of the Earth. Since these types of problem are often significantly non-linear and have non-unique solutions, Markov chain Monte Carlo methods have been used to find probabilistic solutions. Body and surface wave data are usually inverted separately to produce independent velocity models. However, body wave tomography is generally sensitive to structure around the subvolume in which earthquakes occur and produces limited resolution in the shallower Earth, whereas surface wave tomography is often sensitive to shallower structure. To better estimate subsurface properties, we therefore jointly invert for the seismic velocity structure and earthquake locations using body and surface wave data simultaneously. We apply the new joint inversion method to a mining site in the United Kingdom at which induced seismicity occurred and was recorded on a small local network of stations, and where ambient noise recordings are available from the same stations. The ambient noise is processed to obtain inter-receiver surface wave dispersion measurements which are inverted jointly with body wave arrival times from local earthquakes. The results show that by using both types of data, the earthquake source parameters and the velocity structure can be better constrained than in independent inversions. To further understand and interpret the results, we conduct synthetic tests to compare the results from body wave inversion and joint inversion. The results show that trade-offs between source parameters and velocities appear to bias results if only body wave data are used, but this issue is largely resolved by using the joint inversion method. Thus the use of ambient seismic noise and our fully non-linear inversion provides a valuable, improved method to image the subsurface velocity and seismicity.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 479
Author(s):  
Irina Sokolik

This Special Issue aims at addressing the recent developments towards improving our understanding of the diverse radiative impact of different types of aerosols and clouds [...]


1992 ◽  
Vol 29 (7) ◽  
pp. 1509-1529 ◽  
Author(s):  
Tianson Yuan ◽  
G. D. Spence ◽  
R. D. Hyndman

A combined multichannel seismic reflection and refraction survey was carried out in July 1988 to study the Tertiary sedimentary basin architecture and formation and to define the crustal structure and associated plate interactions in the Queen Charlotte Islands region. Simultaneously with the collection of the multichannel reflection data, refractions and wide-angle reflections from the airgun array shots were recorded on single-channel seismographs distributed on land around Hecate Strait and Queen Charlotte Sound. For this paper a subset of the resulting data set was chosen to study the crustal structure in Queen Charlotte Sound and the nearby subduction zone.Two-dimensional ray tracing and synthetic seismogram modelling produced a velocity structure model in Queen Charlotte Sound. On a margin-parallel line, Moho depth was modelled at 27 km off southern Moresby Island but only 23 km north of Vancouver Island. Excluding the approximately 5 km of the Tertiary sediments, the crust in the latter area is only about 18 km thick, suggesting substantial crustal thinning in Queen Charlotte Sound. Such thinning of the crust supports an extensional mechanism for the origin of the sedimentary basin. Deep crustal layers with velocities of more than 7 km/s were interpreted in the southern portion of Queen Charlotte Sound and beneath the continental margin. They could represent high-velocity material emplaced in the crust from earlier subduction episodes or mafic intrusion associated with the Tertiary volcanics.Seismic velocities of both sediment and upper crust layers are lower in the southern part of Queen Charlotte Sound than in the region near Moresby Island. Well velocity logs indicate a similar velocity variation. Gravity modelling along the survey line parallel to the margin provides additional constraints on the structure. The data require lower densities in the sediment and upper crust of southern Queen Charlotte Sound. The low-velocity, low-density sediments in the south correspond to high-porosity marine sediments found in wells in that region and contrast with lower porosity nonmarine sediments in wells farther north.


2013 ◽  
Vol 194 (1) ◽  
pp. 362-366 ◽  
Author(s):  
Yingjie Xia ◽  
Sidao Ni ◽  
Xiangfang Zeng

Abstract Based on studies of continuous waveform data recorded on broad-band seismograph stations in Africa, Europe and North America, we report evidences for two temporally persistent and spatially localized monochromatic vibrating sources (around 0.036 and 0.038 Hz, respectively) in the Gulf of Guinea, instead of just one source (0.038 Hz or 26 s) found 50 yr ago. The location of the 0.036 Hz source is close to the Sao Tome Volcano, therefore it may be related to volcano processes. However, the 0.038 Hz source cannot be explained with known mechanisms, such as tectonic or oceanic processes. The most likely mechanism is volcano processes, but there is no reported active volcano in source region. Such repetitive vibration sources may provide valuable tools for detecting temporal variation of crustal structure of the Earth.


2016 ◽  
Vol 58 (6) ◽  
Author(s):  
V. G. Krishna

<p>Vertical component record sections of local earthquake seismograms from a state-of-the-art Koyna-Warna digital seismograph network are assembled in the reduced time versus epicentral distance frame, similar to those obtained in seismic refraction profiling. The record sections obtained for an average source depth display the processed seismograms from nearly equal source depths with similar source mechanisms and recorded in a narrow azimuth range, illuminating the upper crustal P and S velocity structure in the region. Further, the seismogram characteristics of the local earthquake sources are found to vary significantly for different source mechanisms and the amplitude variations exceed those due to velocity model stratification. In the present study a large number of reflectivity synthetic seismograms are obtained in near offset ranges for a stratified upper crustal model having sharp discontinuities with 7%-10% velocity contrasts. The synthetics are obtained for different source regimes (e.g., strike-slip, normal, reverse) and different sets of source parameters (strike, dip, and rake) within each regime. Seismogram sections with dominantly strike-slip mechanism are found to be clearly favorable in revealing the velocity stratification for both P and S waves. In contrast the seismogram sections for earthquakes of other source mechanisms seem to display the upper crustal P phases poorly with low amplitudes even in presence of sharp discontinuities of high velocity contrasts. The observed seismogram sections illustrated here for the earthquake sources with strike-slip and normal mechanisms from the Koyna-Warna seismic region substantiate these findings. Travel times and reflectivity synthetic seismograms are used for 1-D modeling of the observed virtual source local earthquake seismogram sections and inferring the upper crustal velocity structure in the Koyna-Warna region. Significantly, the inferred upper crustal velocity model in the region reproduces the synthetic seismograms comparable to the observed sections for earthquake sources with differing mechanisms in the Koyna and Warna regions.</p>


Author(s):  
Siva Dwi Harum ◽  
Elvan Yuniarti ◽  
Dwi Haryanto

Sulawesi Island is composed of complex tectonic arrangements. Most earthquake activities in Sulawesi are affected by the Palu - Koro Fault and Matano Fault. Palu - Koro Fault and Matano Fault are one of the faults in Central Sulawesi. Active movement of the fault results in high earthquake activity in the region of Central Sulawesi and its surroundings. This makes the importance of earthquake parameters in Central Sulawesi and surrounding areas. One of the efforts to find out earthquake parameter information accurately is to relocate. The purpose of this study was to conduct hypocenter earthquake relocation and determine the 1-D velocity structure of P waves in Central and surrounding areas using the Coupled Velocity - Hypocenter method with Velest 3.3 software. The data used are tectonic earthquake data from November 2009 to March 2018, data recording stations, and initial speed data. The results of data processing using the Velest 3.3 software are that some of the results of the relocation are close to fault, the final Vp at a depth of 9 km is slower than the initial Vp, the correction of the station obtained in this calculation is in the interval -0.81 to +0.54. 


1969 ◽  
Vol 59 (2) ◽  
pp. 755-769
Author(s):  
K. L. Kaila

abstract A new analytical method for the determination of velocity at the hypocenter of a deep earthquake has been developed making use of P- and S-wave travel times. Unlike Gutenberg's method which is graphical in nature, the present method makes use of the least square technique and as such it yields more quantitative estimates of the velocities at depth. The essential features of this method are the determination from the travel times of a deep-focus earthquake the lower and upper limits Δ1 and Δ2 respectively of the epicentral distance between which p = (dT/dΔ) in the neighborhood of inflection point can be considered stationary so that the travel-time curve there can be approximated to a straight line T = pΔ + a. From p = (1/v*) determined from the straight line least-square fit made on the travel-time observation points between Δ1 and Δ2 for various focal depths, upper-mantle velocity structure can be obtained by making use of the well known relation v = v*(r0 − h)/r0, h being the focal depth of the earthquake, r0 the radius of the Earth, v* the apparent velocity at the point of inflection and v the true velocity at that depth. This method not only gives an accurate estimate of p, at the same time it also yields quite accurate value of a which is a function of focal depth. Calibration curves can be drawn between a and the focal depth h for various regions of the Earth where deep focus earthquakes occur, and these calibration curves can then be used with advantage to determine the focal depths of deep earthquakes in those areas.


1989 ◽  
Vol 79 (6) ◽  
pp. 1883-1893
Author(s):  
Mansour Niazi ◽  
Kin-Yip Chun

Abstract Dispersion of surface waves in the southern Bering Shelf (Bristol Bay) and the Alaska Peninsula is investigated for a study of the regional crustal structure. Our data consist of five shallow earthquakes located along the Aleutian Arc and recorded by long-period, three-component seismographs sited in south-central Alaska. Both Love and Rayleigh group velocities are obtained through the application of the phase-matched filtering technique. The results are converted to equivalent pure-path data by appropriate adjustment using the published information for the continental Alaska. Treating the shear velocity of each layer as an independent parameter, the pure-path group velocities of Love and Rayleigh waves are jointly inverted in order to obtain a satisfactory agreement between the theoretical and the observed dispersion characteristics. Estimates of the resolving power of the inversion and uncertainty of the final velocity structure show substantial improvement over the previously published models. With their crustal thicknesses ranging between 33 and 36 km, none of the final models displays structural characteristics reminiscent of an oceanic crust. Over the northernmost path across the Bristol Bay, we found an indication of a weak low-velocity zone (five per cent reduction relative to the lid velocity) whose prominence diminishes towards the south.


Sign in / Sign up

Export Citation Format

Share Document