Crustal structure in the southern Bering Shelf and the Alaska Peninsula from inversion of surface-wave dispersion data

1989 ◽  
Vol 79 (6) ◽  
pp. 1883-1893
Author(s):  
Mansour Niazi ◽  
Kin-Yip Chun

Abstract Dispersion of surface waves in the southern Bering Shelf (Bristol Bay) and the Alaska Peninsula is investigated for a study of the regional crustal structure. Our data consist of five shallow earthquakes located along the Aleutian Arc and recorded by long-period, three-component seismographs sited in south-central Alaska. Both Love and Rayleigh group velocities are obtained through the application of the phase-matched filtering technique. The results are converted to equivalent pure-path data by appropriate adjustment using the published information for the continental Alaska. Treating the shear velocity of each layer as an independent parameter, the pure-path group velocities of Love and Rayleigh waves are jointly inverted in order to obtain a satisfactory agreement between the theoretical and the observed dispersion characteristics. Estimates of the resolving power of the inversion and uncertainty of the final velocity structure show substantial improvement over the previously published models. With their crustal thicknesses ranging between 33 and 36 km, none of the final models displays structural characteristics reminiscent of an oceanic crust. Over the northernmost path across the Bristol Bay, we found an indication of a weak low-velocity zone (five per cent reduction relative to the lid velocity) whose prominence diminishes towards the south.

2001 ◽  
Vol 40 (3) ◽  
pp. 181-190
Author(s):  
A. Iglesias ◽  
V. M. Cruz-Atienza ◽  
N. M. Shapiro ◽  
S. K. Singh ◽  
J. F. Pacheco

A partir de catorce sismos de subducción, agrupados en dos trayectorias (una perpendicular y otra paralela a la línea de costa), se calculó un apilado sobre las curvas de dispersión de velocidad de grupo. Estas curvas promedio fueron invertidas usando, por separado, los métodos de algoritmos genéticos y recristalización simulada. Los resultados muestran fuertes diferencias entre ambos modelos corticales, sobre todo, en los parámetros de la capa más somera y en la localización del Moho. Estas diferencias pueden ser explicadas debido a que la primera trayectoria atraviesa el terreno tectonoestratigráfico "Guerrero" y la segunda el "Oaxaca". La inversión con algoritmos genéticos (GA) probó ser considerablemente más rápida que aquélla con recristalización simulada (SA). Por otro lado SA requiere una pequeña cantidad de memoria y alcanza un desajuste menor que G.A.


2020 ◽  
Vol 222 (3) ◽  
pp. 1639-1655
Author(s):  
Xin Zhang ◽  
Corinna Roy ◽  
Andrew Curtis ◽  
Andy Nowacki ◽  
Brian Baptie

SUMMARY Seismic body wave traveltime tomography and surface wave dispersion tomography have been used widely to characterize earthquakes and to study the subsurface structure of the Earth. Since these types of problem are often significantly non-linear and have non-unique solutions, Markov chain Monte Carlo methods have been used to find probabilistic solutions. Body and surface wave data are usually inverted separately to produce independent velocity models. However, body wave tomography is generally sensitive to structure around the subvolume in which earthquakes occur and produces limited resolution in the shallower Earth, whereas surface wave tomography is often sensitive to shallower structure. To better estimate subsurface properties, we therefore jointly invert for the seismic velocity structure and earthquake locations using body and surface wave data simultaneously. We apply the new joint inversion method to a mining site in the United Kingdom at which induced seismicity occurred and was recorded on a small local network of stations, and where ambient noise recordings are available from the same stations. The ambient noise is processed to obtain inter-receiver surface wave dispersion measurements which are inverted jointly with body wave arrival times from local earthquakes. The results show that by using both types of data, the earthquake source parameters and the velocity structure can be better constrained than in independent inversions. To further understand and interpret the results, we conduct synthetic tests to compare the results from body wave inversion and joint inversion. The results show that trade-offs between source parameters and velocities appear to bias results if only body wave data are used, but this issue is largely resolved by using the joint inversion method. Thus the use of ambient seismic noise and our fully non-linear inversion provides a valuable, improved method to image the subsurface velocity and seismicity.


1992 ◽  
Vol 29 (7) ◽  
pp. 1509-1529 ◽  
Author(s):  
Tianson Yuan ◽  
G. D. Spence ◽  
R. D. Hyndman

A combined multichannel seismic reflection and refraction survey was carried out in July 1988 to study the Tertiary sedimentary basin architecture and formation and to define the crustal structure and associated plate interactions in the Queen Charlotte Islands region. Simultaneously with the collection of the multichannel reflection data, refractions and wide-angle reflections from the airgun array shots were recorded on single-channel seismographs distributed on land around Hecate Strait and Queen Charlotte Sound. For this paper a subset of the resulting data set was chosen to study the crustal structure in Queen Charlotte Sound and the nearby subduction zone.Two-dimensional ray tracing and synthetic seismogram modelling produced a velocity structure model in Queen Charlotte Sound. On a margin-parallel line, Moho depth was modelled at 27 km off southern Moresby Island but only 23 km north of Vancouver Island. Excluding the approximately 5 km of the Tertiary sediments, the crust in the latter area is only about 18 km thick, suggesting substantial crustal thinning in Queen Charlotte Sound. Such thinning of the crust supports an extensional mechanism for the origin of the sedimentary basin. Deep crustal layers with velocities of more than 7 km/s were interpreted in the southern portion of Queen Charlotte Sound and beneath the continental margin. They could represent high-velocity material emplaced in the crust from earlier subduction episodes or mafic intrusion associated with the Tertiary volcanics.Seismic velocities of both sediment and upper crust layers are lower in the southern part of Queen Charlotte Sound than in the region near Moresby Island. Well velocity logs indicate a similar velocity variation. Gravity modelling along the survey line parallel to the margin provides additional constraints on the structure. The data require lower densities in the sediment and upper crust of southern Queen Charlotte Sound. The low-velocity, low-density sediments in the south correspond to high-porosity marine sediments found in wells in that region and contrast with lower porosity nonmarine sediments in wells farther north.


1977 ◽  
Vol 67 (3) ◽  
pp. 735-750
Author(s):  
Kin-Yip Chun ◽  
Toshikatsu Yoshii

abstract Group velocities of fundamental-mode Rayleigh and Love waves are analyzed to construct a crustal structure of the Tibetan Plateau. A moving window analysis is employed to compute group velocities in a wide period range of 7 to 100 sec for 17 individual paths. The crustal models derived from these dispersion data indicate that under the Tibetan Plateau the total crustal thickness is about 70 km and that the crustal velocities are generally low. The low velocities are most probably caused by high temperatures. A low-velocity zone located at an intermediate depth within the crust appears to be strongly demanded by the observed dispersion data. The main features of the proposed crustal structure will place stringent constraints on future tectonic models of the Tibetan Plateau which is generally regarded as a region of active deformation due to the continent-continent collision between India and Asia.


1967 ◽  
Vol 57 (6) ◽  
pp. 1367-1392
Author(s):  
Eduard Berg ◽  
Susumu Kubota ◽  
Jurgen Kienle

Abstract Seismic and gravity observations were carried out in the active volcanic area of Katmai in the summer of 1965. A determination of hypocenters has been aftempted using S and P arrivals at a station located at Kodiak and two stations located in the Monument. However, in most cases, deviations of travel times from the Jeffreys-Bullen tables were rather large. Therefore hypocenters are not well located. A method based on P- and S-wave arrivals yields a Poisson's ratio of 0.3 for the upper part of the mantle under Katmai. This higher value is probably due to the magma formation. The average depth to the Moho from seismic data in the same area is 38 km and 32 km under Kodiak. Using Woollard's relation between Bouguer anomaly and depth to the Moho, a small mountain root under the volcanoes with a depth of 34 km was found dipping gently up to 31 km on the NW side. The active volcanic cones are located along an uplift block. This block is associated with a 35 mgal Bouguer anomaly. The Bouguer anomaly contour map for the Alaska Peninsula is given and an interpretation attempted.


1998 ◽  
Vol 41 (1) ◽  
Author(s):  
G. A. Tselentis ◽  
G. Delis

The importance of detailed knowledge of the shear-wave velocity structure of the upper geological layers was recently stressed in strong motion studies. In this work we describe an algorithm which we have developed to infer the 1D shear wave velocity structure from the inversion of multichannel surface wave dispersion data (ground-roll). Phase velocities are derived from wavenumber-frequency stacks while the inversion process is speeded up by the use of Householder transformations. Using synthetic and experimental data, we examined the applicability of the technique in deducing S-wave profiles. The comparison of the obtained results with those derived from cross-hole measurements and synthesized wave fields proved the reliability of the technique for the rapid assessment of shear wave profiles during microzonation investigations.


Sign in / Sign up

Export Citation Format

Share Document