Rosenhain Centenary Conference - 3. Materials development present and future 3.7. Recent developments in ultra high strength steels and their applications

As far as the development of new classes of ultra high strength steels is concerned the past decade has seen little progress apart from a few notable exceptions such as the trip steels. However, the introduction of fracture mechanics concepts to the evaluation of material properties has been responsible for an enormous breakthrough in the understanding of the factors which influence the fracture processes in conventional high strength steels. This approach has concerned not only the resistance of these materials to unstable fracture under rising load but also the stable crack propagation which can occur in aggressive environments under static load and in both aggressive and inert environments under cyclic loading conditions. Utilization of fracture mechanics has demonstrated the improvement which can be obtained in the properties of high strength steels through the use of thermomechanical treatments, hardening by intermetallic compounds and control of inclusions. Though much still remains to be learned in each of these fields, this paper highlights some aspects of the progress which has been made in the understanding of the fracture, fatigue and stress corrosion cracking of high strength steels.

2021 ◽  
Vol 174 ◽  
pp. 111035
Author(s):  
Ajit Kumar Pramanick ◽  
Hrishikesh Das ◽  
Ji-Woo Lee ◽  
Yeyoung Jung ◽  
Hoon-Hwe Cho ◽  
...  

2014 ◽  
Vol 783-786 ◽  
pp. 2798-2803 ◽  
Author(s):  
Marion Allart ◽  
Alexandre Benoit ◽  
Pascal Paillard ◽  
Guillaume Rückert ◽  
Myriam Chargy

Friction Stir Welding (FSW) is one of the most recent welding processes, invented in 1991 by The Welding Institute. Recent developments, mainly using polycrystalline cubic boron nitride (PCBN) tools, broaden the range of use of FSW to harder materials, like steels. Our study focused on the assembly of high yield strength steels for naval applications by FSW, and its consequences on the metallurgical properties. The main objectivewas to analyze the metallurgical transformations occurring during welding. Welding tests were conducted on three steels: 80HLES, S690QL and DH36. For each welded sample, macrographs, micrographs and micro-hardness maps were performed to characterize the variation of microstructures through the weld.


2014 ◽  
Vol 775-776 ◽  
pp. 136-140 ◽  
Author(s):  
Renato Araujo Barros ◽  
Antonio Jorge Abdalla ◽  
Humberto Lopes Rodrigues ◽  
Marcelo dos Santos Pereira

The 4340 are classified as ultra-high strength steels used by the aviation industry and aerospace applications such as aircraft landing gear and several structural applications, usually in quenched and tempered condition. In this situation occurs reduction of toughness, which encourages the study of multiphasic and bainític structures, in order to maintain strength without loss of toughness. In this study, ferritic-pearlitic structure was compared to bainitic and martensitic structure, identified by the reagents Nital, LePera and Sodium Metabisulfite. Sliding wear tests of the type pin-on-disk were realized and the results related to the microstructure of these materials and also to their hardnesses. It is noted that these different microstructures had very similar behavior, concluding that all three tested pairs can be used according to the request level.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 631 ◽  
Author(s):  
Hamid Bayat ◽  
Sayantan Sarkar ◽  
Bharath Anantharamaiah ◽  
Francesco Italiano ◽  
Aleksandar Bach ◽  
...  

Increased passenger safety and emission control are two of the main driving forces in the automotive industry for the development of light weight constructions. For increased strength to weight ratio, ultra-high-strength steels (UHSSs) are used in car body structures. Prediction of failure in such sheet metals is of high significance in the simulation of car crashes to avoid additional costs and fatalities. However, a disadvantage of this class of metals is a pronounced scatter in their material properties due to e.g., the manufacturing processes. In this work, a robust numerical model is developed in order to take the scatter into account in the prediction of the failure in manganese boron steel (22MnB5). To this end, the underlying material properties which determine the shapes of forming limit curves (FLCs) are obtained from experiments. A modified Marciniak–Kuczynski model is applied to determine the failure limits. By using a statistical approach, the material scatter is quantified in terms of two limiting hardening relations. Finally, the numerical solution obtained from simulations is verified experimentally. By generation of the so called forming limit bands (FLBs), the dispersion of limit strains is captured within the bounds of forming limits instead of a single FLC. In this way, the FLBs separate the whole region into safe, necking and failed zones.


2019 ◽  
Vol 25 (2) ◽  
pp. 101 ◽  
Author(s):  
Hana Jirková ◽  
Kateřina Opatová ◽  
Štěpán Jeníček ◽  
Jiří Vrtáček ◽  
Ludmila Kučerová ◽  
...  

<p class="AMSmaintext">Development of high strength or even ultra-high strength steels is mainly driven by the automotive industry which strives to reduce the weight of individual parts, fuel consumption, and CO<sub>2</sub> emissions. Another important factor is to improve passenger safety. In order to achieve the required mechanical properties, it is necessary to use suitable heat treatment in addition to an appropriate alloying strategy. The main problem of these types of treatments is the isothermal holding step. For TRIP steels, the holding temperature lies in the field of bainitic transformation. These isothermal holds are economically demanding to perform in industrial conditions. Therefore new treatments without isothermal holds, which are possible to integrate directly into the production process, are searched. One way to produce high-strength sheet is the press-hardening technology. Physical simulation based on data from a real-world press-hardening process was tested on CMnSi TRIP steel. Mixed martensitic-bainitic structures with ferrite and retained austenite (RA) were obtained, having tensile strengths in excess of 1000 MPa.</p>


Sign in / Sign up

Export Citation Format

Share Document