The nonlinear stability of a free shear layer in the viscous critical layer régime

The nonlinear evolution of weakly amplified waves in a hyperbolic tangent free shear layer is described for spatially and temporally growing waves when the shear layer Reynolds number is large and the critical layer viscous. An artificial body force is introduced in order to keep the mean flow parallel. Jump conditions on the perturbation velocity and mean vorticity are derived across the critical layer by applying the method of matched asymptotic expansions and it is shown that viscous effects outside the critical layer have to be taken into account in order to obtain a uniformly valid solution. Consequently the true neutral wavenumber and frequency are lower than their inviscid counterparts. When only the harmonic fluctuations are considered, it is known that the Landau constant is negative so that linearly amplified disturbances reach an equilibrium amplitude. It is shown that when the mean flow distortion generated by Reynolds stresses is also included, the Landau constant becomes positive. Thus, in both the spatial and temporal case, linearly amplified waves are further destabilized and damped waves are unstable above a threshold amplitude.

1994 ◽  
Vol 278 ◽  
pp. 101-121 ◽  
Author(s):  
R. Mallier ◽  
S. A. Maslowe

We report the results of an investigation of the weakly nonlinear evolution of a triad of waves, each slightly amplified on a linear basis, that are superimposed on a tanh y mixing layer. The triad consists of a plane wave and a pair of oblique modes that act as a subharmonic of order 1/2. The oblique modes are inclined at approximately ±60°. to the mean flow direction and because the resonance conditions are satisfied exactly the analysis is entirely self-consistent as an asymptotic theory. The nonlinearity first occurs within the critical layer and the initial interaction is of the parametric resonance type. This produces faster than exponential growth of the oblique waves, behaviour observed recently in the experiments of Corke & Kusek (1993). The critical-layer dynamics lead subsequently to coupled integro-differential equations governing the amplitude evolution and, as first shown in related work by Goldstein & Lee (1992) on boundary layers in an adverse pressure gradient, these equations develop singularities in a finite time.


2008 ◽  
Vol 606 ◽  
pp. 27-49 ◽  
Author(s):  
I. ALBAYRAK ◽  
E. J. HOPFINGER ◽  
U. LEMMIN

Experimental results are presented of the mean flow and turbulence characteristics in the near field of a plane wall jet issuing from a nozzle onto flat and concave walls consisting of fixed sand beds. This is a flow configuration of interest for sediment erosion, also referred to as scouring. The measurements were made with an acoustic profiler that gives access to the three components of the instantaneous velocities. For the flat-wall flow, it is shown that the outer-layer spatial growth rate and the maxima of the Reynolds stresses approach the values accepted for the far field of a wall jet at a downstream distance x/b0 ≈ 8. These maxima are only about half the values of a plane free jet. This reduction in Reynolds stresses is also observed in the shear-layer region, x/b0 < 6, where the Reynolds shear stress is about half the value of a free shear layer. At distances x/b0 > 11, the maximum Reynolds shear stress approaches the value of a plane free jet. This change in Reynolds stresses is related to the mean vertical velocity that is negative for x/b0 < 8 and positive further downstream. The evolution of the inner region of the wall jet is found to be in good agreement with a previous model that explicitly includes the roughness length.On the concave wall, the mean flow and the Reynolds stresses are drastically changed by the adverse pressure gradient and especially by the development of Görtler vortices. On the downslope side of the scour hole, the flow is nearly separating with the wall shear stress tending to zero, whereas on the upslope side, the wall-friction coefficient is increased by a factor of about two by Görtler vortices. These vortices extend well into the outer layer and, just above the wall, cause a substantial increase in Reynolds shear stress.


2012 ◽  
Vol 19 ◽  
pp. 121-132
Author(s):  
XIN GUO ◽  
QIANG WANG

The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.


2008 ◽  
Vol 130 (6) ◽  
Author(s):  
Martin Agelinchaab ◽  
Mark F. Tachie

A particle image velocimetry is used to study the mean and turbulent fields of separated and redeveloping flow over square, rectangular, and semicircular blocks fixed to the bottom wall of an open channel. The open channel flow is characterized by high background turbulence level, and the ratio of the upstream boundary layer thickness to block height is considerably higher than in prior experiments. The variation of the Reynolds stresses along the dividing streamlines is discussed within the context of vortex stretching, longitudinal strain rate, and wall damping. It appears that wall damping is a more dominant mechanism in the vicinity of reattachment. In the recirculation and reattachment regions, profiles of the mean velocity, turbulent quantities, and transport terms are used to document the salient features of block geometry on the flow. The flow characteristics in these regions strongly depend on block geometry. Downstream of reattachment, a new shear layer is formed, and the redevelopment of the shear layer toward the upstream open channel boundary layer is studied using the boundary layer parameters and Reynolds stresses. The results show that the mean flow rapidly redeveloped so that the Clauser parameter recovered to its upstream value at 90 step heights downstream of reattachment. However, the rate of development close to reattachment strongly depends on block geometry.


2007 ◽  
Vol 129 (11) ◽  
pp. 1372-1383 ◽  
Author(s):  
Kyoungsik Chang ◽  
George Constantinescu ◽  
Seung-O Park

The three-dimensional (3D) incompressible flow past an open cavity in a channel is predicted using the Spalart–Almaras (SA) and the shear-stress-transport model (SST) based versions of detached eddy simulation (DES). The flow upstream of the cavity is fully turbulent. In the baseline case the length to depth (L∕D) ratio of the cavity is 2 and the Reynolds number ReD=3360. Unsteady RANS (URANS) is performed to better estimate the performance of DES using the same code and meshes employed in DES. The capabilities of DES and URANS to predict the mean flow, velocity spectra, Reynolds stresses, and the temporal decay of the mass of a passive contaminant introduced instantaneously inside the cavity are assessed based on comparisons with results from a well resolved large eddy simulation (LES) simulation of the same flow conducted on a very fine mesh and with experimental data. It is found that the SA-DES simulation with turbulent fluctuations at the inlet gives the best overall predictions for the flow statistics and mass exchange coefficient characterizing the decay of scalar mass inside the cavity. The presence of inflow fluctuations in DES is found to break the large coherence of the vortices shed in the separated shear layer that are present in the simulations with steady inflow conditions and to generate a wider range of 3D eddies inside the cavity, similar to LES. The predictions of the mean velocity field from URANS and DES are similar. However, URANS predictions show poorer agreement with LES and experiment compared to DES for the turbulence quantities. Additionally, simulations with a higher Reynolds number (ReD=33,600) and with a larger length to depth ratio (L∕D=4) are conducted to study the changes in the flow and shear-layer characteristics, and their influence on the ejection of the passive contaminant from the cavity.


Organized structures in turbulent shear flow have been observed both in the laboratory and in the atmosphere and ocean. Recent work on modelling such structures in a temporally developing, horizontally homogeneous turbulent free shear layer (Liu & Merkine 19766) has been extended to the spatially developing mixing layer, there being no available rational transformation between the two nonlinear problems. We consider the kinetic energy development of the mean flow, large-scale structure and finegrained turbulence with a conditional average, supplementing the usual time average, to separate the non-random from the random part of the fluctuations. The integrated form of the energy equations and the accompanying shape assumptions are used to derive ‘ amplitude ’ equations for the mean flow, characterized by the shear layer thickness, the non-random and the random components of flow (which are characterized by their respective energy densities). The closure problem was overcome by the shape assumptions which entered into the interaction integrals: the instability-wavelike large-scale structure was taken to be two-dimensional and the local vertical distribution function was obtained by solving the Rayleigh equation for various local frequencies; the vertical shape of the mean stresses of the fine-grained turbulence was estimated by making use of experimental results; the vertical shapes of the wave-induced stresses were calculated locally from their corresponding equations.


1992 ◽  
Vol 236 ◽  
pp. 635-664 ◽  
Author(s):  
Lennart S. Hultgren

A two-dimensional disturbance evolving from a strictly linear, finite-growth-rate instability wave with nonlinear effects first becoming important in the critical layer is considered. The analysis is carried out for a general weakly non-parallel mean flow using matched asymptotic expansions. The flow in the critical layer is governed by a nonlinear vorticity equation which includes a spatial-evolution term. As in Goldstein & Hultgren (1988), the critical layer ages into a quasi-equilibrium one and the initial exponential growth of the instability wave is converted into a weak algebraic growth during the roll-up process. This leads to a next stage of evolution where the instability-wave growth is simultaneously affected by mean-flow divergence and nonlinear critical-layer effects and is eventually converted to decay. Expansions for the various streamwise regions of the flow are combined into a single composite formula accounting for both shear-layer spreading and nonlinear critical-layer effects and good agreement with the experimental results of Thomas & Chu (1989), Freymuth (1966), and C.-M. Ho & Y. Zohar (1989, private communication) is demonstrated.


2017 ◽  
Vol 830 ◽  
pp. 660-680 ◽  
Author(s):  
T. Kataoka ◽  
S. J. Ghaemsaidi ◽  
N. Holzenberger ◽  
T. Peacock ◽  
T. R. Akylas

The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified Boussinesq fluid of constant buoyancy frequency, $N$, is investigated. This variant of the widely studied horizontal configuration – where a cylinder aligned with a plane of constant gravitational potential induces four wave beams that emanate from the cylinder, forming a cross pattern known as the ‘St. Andrew’s Cross’ – brings out certain unique features of radiated internal waves from a line source tilted to the horizontal. Specifically, simple kinematic considerations reveal that for a cylinder inclined by a given angle $\unicode[STIX]{x1D719}$ to the horizontal, there is a cutoff frequency, $N\sin \unicode[STIX]{x1D719}$, below which there is no longer a radiated wave field. Furthermore, three-dimensional effects due to the finite length of the cylinder, which are minor in the horizontal configuration, become a significant factor and eventually dominate the wave field as the cutoff frequency is approached; these results are confirmed by supporting laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cutoff frequency as the group-velocity component perpendicular to the cylinder direction vanishes at cutoff; as a result, energy cannot be easily radiated away from the source, and nonlinear and viscous effects are likely to come into play. This scenario is examined by adapting the model for three-dimensional wave beams developed in Kataoka & Akylas (J. Fluid Mech., vol. 769, 2015, pp. 621–634) to the near-resonant wave field due to a tilted line source of large but finite length. According to this model, the combination of three-dimensional, nonlinear and viscous effects near cutoff triggers transfer of energy, through the action of Reynolds stresses, to a circulating horizontal mean flow. Experimental evidence of such an induced mean flow near cutoff is also presented.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yuanchao Li ◽  
Huang Chen ◽  
Joseph Katz

Modeling of turbulent flows in axial turbomachines is challenging due to the high spatial and temporal variability in the distribution of the strain rate components, especially in the tip region of rotor blades. High-resolution stereo-particle image velocimetry (SPIV) measurements performed in a refractive index-matched facility in a series of closely spaced planes provide a comprehensive database for determining all the terms in the Reynolds stress and strain rate tensors. Results are also used for calculating the turbulent kinetic energy (TKE) production rate and transport terms by mean flow and turbulence. They elucidate some but not all of the observed phenomena, such as the high anisotropy, high turbulence levels in the vicinity of the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side (SS) tip corner. The applicability of popular Reynolds stress models based on eddy viscosity is also evaluated by calculating it from the ratio between stress and strain rate components. Results vary substantially, depending on which components are involved, ranging from very large positive to negative values. In some areas, e.g., in the tip gap and around the TLV, the local stresses and strain rates do not appear to be correlated at all. In terms of effect on the mean flow, for most of the tip region, the mean advection terms are much higher than the Reynolds stress spatial gradients, i.e., the flow dynamics is dominated by pressure-driven transport. However, they are of similar magnitude in the shear layer, where modeling would be particularly challenging.


Sign in / Sign up

Export Citation Format

Share Document