scholarly journals Current trends in modelling research for turbulent aerodynamic flows

Author(s):  
Thomas B Gatski ◽  
Christopher L Rumsey ◽  
Rémi Manceau

The engineering tools of choice for the computation of practical engineering flows have begun to migrate from those based on the traditional Reynolds-averaged Navier–Stokes approach to methodologies capable, in theory if not in practice, of accurately predicting some instantaneous scales of motion in the flow. The migration has largely been driven by both the success of Reynolds-averaged methods over a wide variety of flows and the inherent limitations of the method itself. Practitioners, emboldened by their ability to predict a wide variety of statistically steady equilibrium turbulent flows, have now turned their attention to flow control and non-equilibrium flows, i.e. separation control. This review gives some current priorities in traditional Reynolds-averaged modelling research as well as some methodologies being applied to a new class of turbulent flow control problem.

Author(s):  
Yan Jin

Abstract The turbulent flow in a compressor cascade is calculated by using a new simulation method, i.e., parameter extension simulation (PES). It is defined as the calculation of a turbulent flow with the help of a reference solution. A special large-eddy simulation (LES) method is developed to calculate the reference solution for PES. Then, the reference solution is extended to approximate the exact solution for the Navier-Stokes equations. The Richardson extrapolation is used to estimate the model error. The compressor cascade is made of NACA0065-009 airfoils. The Reynolds number 3.82 × 105 and the attack angles −2° to 7° are accounted for in the study. The effects of the end-walls, attack angle, and tripping bands on the flow are analyzed. The PES results are compared with the experimental data as well as the LES results using the Smagorinsky, k-equation and WALE subgrid models. The numerical results show that the PES requires a lower mesh resolution than the other LES methods. The details of the flow field including the laminar-turbulence transition can be directly captured from the PES results without introducing any additional model. These characteristics make the PES a potential method for simulating flows in turbomachinery with high Reynolds numbers.


2018 ◽  
Vol 854 ◽  
Author(s):  
Javier Jiménez

The question of whether significant subvolumes of a turbulent flow can be identified by automatic means, independently of a priori assumptions, is addressed using the example of two-dimensional decaying turbulence. Significance is defined as influence on the future evolution of the flow, and the problem is cast as an unsupervised machine ‘game’ in which the rules are the Navier–Stokes equations. It is shown that significance is an intermittent quantity in this particular flow, and that, in accordance with previous intuition, its most significant features are vortices, while the least significant ones are dominated by strain. Subject to cost considerations, the method should be applicable to more general turbulent flows.


Author(s):  
Shivank Srivastava ◽  
Brandon M. Taravella ◽  
Kazim M. Akyuzlu

Abstract A numerical study was conducted to study the unsteady characteristics of incompressible boundary layer flows over an oscillating flat plate under laminar and intermittently turbulent flow conditions using pseudo-compressible Reynolds Averaged Navier-Stokes (RANS) model. The numerical study is carried out using an in-house code and a commercial CFD package (Fluent). Two equation (k-ε) turbulence closure model, modified near the wall, is used along with RANS equations to simulate intermittently turbulent flows. Fully Explicit-Finite Difference technique (FEFD) is employed to solve the governing differential equations. For validation purposes, the velocity fields predicted by the in-house code and commercial CFD package are compared to the one given by analytical solution to Stokes’ second problem for an oscillating flat plate. Numerical experiments were conducted for unsteady cases for Stokes’ Reynolds number corresponding to laminar and intermittently turbulent flows, respectively. Time dependent velocity profiles, shear stress distribution, turbulence properties during the accelerating and decelerating stages of oscillations are predicted. The above predictions are then compared to ones predicted by commercial CFD code. The velocity magnitudes predicted by the in-house code and commercial CFD code are within acceptable range for laminar and intermittently turbulent flow conditions.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050239
Author(s):  
Weixiang Ye ◽  
Xianwu Luo ◽  
Ying Li

This study presents a partially averaged Navier–Stokes model, MSST PANS, based on a modified SST [Formula: see text] turbulence model to predict turbulent flows with large streamline curvature. The model was validated for turbulent flow in a [Formula: see text] curved rectangular duct (Re = 224,000) to assess the MSST PANS capabilities. The predictions are compared against flow simulations for the same curved rectangular duct using four turbulence models including the standard [Formula: see text] model, SST [Formula: see text] model, [Formula: see text] PANS model and SST [Formula: see text] PANS model. Comparisons among those numerical results and available experimental data show that the MSST PANS model more accurately predicts the velocity components in all three directions, especially in the wall-bounded region than the other models. The study also shows the advantages of the MSST PANS model for predicting the Reynolds stresses, vorticity, and smaller scale turbulent structures in the wall-bounded region not only qualitatively but quantitatively. Furthermore, the MSST PANS model requires fewer computations than the SST PANS model, indicating that this turbulence model, which takes large streamlines curvature effects into consideration, is an effective alternative for capturing the small-scale turbulence flow structures. This turbulence model is expected to be very useful for engineering applications, especially for flows in turbomachinery.


2015 ◽  
Vol 112 (49) ◽  
pp. 15048-15053 ◽  
Author(s):  
Vasil Bratanov ◽  
Frank Jenko ◽  
Erwin Frey

Turbulence is a fundamental and ubiquitous phenomenon in nature, occurring from astrophysical to biophysical scales. At the same time, it is widely recognized as one of the key unsolved problems in modern physics, representing a paradigmatic example of nonlinear dynamics far from thermodynamic equilibrium. Whereas in the past, most theoretical work in this area has been devoted to Navier–Stokes flows, there is now a growing awareness of the need to extend the research focus to systems with more general patterns of energy injection and dissipation. These include various types of complex fluids and plasmas, as well as active systems consisting of self-propelled particles, like dense bacterial suspensions. Recently, a continuum model has been proposed for such “living fluids” that is based on the Navier–Stokes equations, but extends them to include some of the most general terms admitted by the symmetry of the problem [Wensink HH, et al. (2012) Proc Natl Acad Sci USA 109:14308–14313]. This introduces a cubic nonlinearity, related to the Toner–Tu theory of flocking, which can interact with the quadratic Navier–Stokes nonlinearity. We show that as a result of the subtle interaction between these two terms, the energy spectra at large spatial scales exhibit power laws that are not universal, but depend on both finite-size effects and physical parameters. Our combined numerical and analytical analysis reveals the origin of this effect and even provides a way to understand it quantitatively. Turbulence in active fluids, characterized by this kind of nonlinear self-organization, defines a new class of turbulent flows.


Author(s):  
Leopold Sˇkerget ◽  
Jure Ravnik

Detached turbulent flows are difficult to predict numerically and often serve as benchmark cases for developing new numerical schemes and new turbulent models. Turbulent flow over periodic hills is one such examples, since the flow exhibits separation and reattachment on a smoothly and/or sharp curved geometry, strong pressure gradients and fluctuation of the separation point in time. These cases have been chosen by many authors for testing different turbulence simulation approaches. When the bottom wall is heated, the complexity of the problem increased, since convective heat transfer is defined by small scale turbulent structures close to the wall. We developed a Reynolds-Averaged Navier-Stokes and Large Eddy Simulation solver based on the velocity-vorticity formulation of Navier Stokes equations. RANS equations are coupled by a low-Reynolds number turbulent model, while Smagorinsky subgrid model is used for LES. The governing equations are solved with a numerical solution algorithm, which is based on the boundary element method. The pressure field is computed in a post processing step by solving a Poisson equation. The single domain as well as domain decomposition approaches are applied. The developed method was validated using flow over periodic hills test case.


Author(s):  
Insaf Mehrez ◽  
Ramla Gheith ◽  
Fethi Aloui

Abstract A numerical study is proposed to analyze the turbulent flow structures. This paper aims to determine the effect of the series of the cavities. The configuration is similar to that represented by two walls with infinite width, one of which is mobile and the other is fixed. The series of cavity are placed on the fixed wall. The objectives are to study the aero acoustic capabilities of LBM and to build and to assess the efficiency of the Lattice Boltzmann Equation (LBE) as a new computational tool to perform the Large-Eddy Simulations (LES) for turbulent flows. In the first part, the background of LBM is presented and the construction of Navier-Stokes equations from Boltzmann equation is discussed. The LBM-LES model for solving transition is developed and turbulence modeling is implemented. In the second part, the dynamics of the flows in the vicinity of cavities with symmetric or asymmetric edges are considered, to then discuss the oscillation phenomenon. The effect of the geometric of the cavity and the Reynolds numbers were studied to investigate the fluid flow dynamics. We were focusing on the dynamics of asymmetric deep cavity flows, to put forward the topology of the cavity flow and to highlight the effects of dissymmetry and aspect ratio.


Author(s):  
Arnab Chakraborty ◽  
HV Warrior

The present paper reports numerical simulation of turbulent flow over a square cylinder using a novel scale resolving computational fluid dynamics technique named Partially-Averaged Navier–Stokes (PANS), which bridges Reynolds-Averaged Navier–Stokes (RANS) with Direct Numerical Simulation (DNS) in a seamless manner. All stream-wise and wall normal mean velocity components, turbulent stresses behavior have been computed along the flow (streamwise) as well as in transverse (wall normal) direction. The measurement locations are chosen based on the previous studies so that results could be compared. However, the Reynolds number ( Re) of the flow is maintained at 21,400 and K– ω turbulence model is considered for the present case. All the computations are performed in OpenFOAM framework using a finite volume solver. Additionally, turbulent kinetic energy variations are presented over a wide range of measurement planes in order to explain the energy transfer process in highly unsteady turbulent flow field. The fluctuating root mean square velocities in the streamwise as well as in the wall normal direction have been discussed in the present work. It has been found that Partially-Averaged Navier–Stokes (PANS) model is capable of capturing the properties of highly unsteady turbulent flows and gives better results than Reynolds-Averaged Navier–Stokes (RANS). The results obtained using Partially-Averaged Navier–Stokes (PANS) are quite comparable with Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) data available in literature. The partially-averaged Navier–Stokes results are compared with our simulated Reynolds-Averaged Navier–Stokes (RANS) results, available experimental as well as numerical results in literature and it is found to be good in agreement.


Author(s):  
Madhu Vellakal ◽  
Muris Torlak ◽  
Seid Koric ◽  
Ahmed Taha

The flow characteristics of spherical bodies, arising in a variety of important engineering and environmental problems, range from laminar to turbulent flow. Turbulent flows are predominantly studied using the models based on Reynolds-averaged Navier-Stokes (RANS) equations. Especially, in case of flows around bluff bodies RANS models have limitations in capturing flow separation and other characteristic flow properties. Hence, the use of high-fidelity turbulent models is required to investigate the physics of these types of flow in detail. This study aims to compare and analyze the results of an incompressible turbulent flow around a sphere with additional geometric detail, like a trip wire, using different simulation techniques: Large Eddy Simulation (LES) and RANS. Modeling bodies with different characteristic geometric scales may require high-performance computing (HPC) resources due to the need to include accurate spatial and temporal resolution using unstructured mesh generation. This may be under circumstances additional criterion for decision which simulation approach is to be adopted.


This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.


Sign in / Sign up

Export Citation Format

Share Document