Sponge-like structures for application in photovoltaics

Author(s):  
Jan Perlich ◽  
Gunar Kaune ◽  
Mine Memesa ◽  
Jochen S Gutmann ◽  
Peter Müller-Buschbaum

Large surface areas at an interface between two different materials are desired in many research fields where the interaction between these materials significantly affects the performance of the physical system. This behaviour is illustrated on sponge-like structures, which assign for such a high surface area, and demonstrate the development from bulk material to thin films and a variety of applications. The focus is on sponge-like nanostructures consisting of a network of aggregated titania nanoparticles applied in hybrid structures for photovoltaics. Examples based on a sol–gel process for the preparation of titania nanostructures in thin films, mimicking the sponge morphology, are shown. In general, titania films are widely used in photovoltaics, contributing to a large surface area available for interfacial reactions, e.g. charge carrier transfer routes. Interpenetrating networks with dimensions matching exciton diffusion lengths in the polymer component of a hybrid organic–inorganic photovoltaic structure are highly desirable. To characterize the fabricated morphology, atomic force microscopy and field-emission scanning electron microscopy are employed in real space. The advanced scattering technique of grazing-incidence small-angle X-ray scattering complements the characterization in reciprocal space. From the obtained results, the sponge-like morphology is verified, a physical description of the morphology with statistical relevance is constructed and the successful complete filling of the network is shown. According to this description, the presented sponge-like titania nanostructures are well suited for use in hybrid organic–inorganic solar cells.

2017 ◽  
Vol 1 (8) ◽  
pp. 1662-1667 ◽  
Author(s):  
Felix Rechberger ◽  
Gabriele Ilari ◽  
Christoph Willa ◽  
Elena Tervoort ◽  
Markus Niederberger

We present the nonaqueous sol–gel synthesis of crystalline SrTi1−xCrxO3 (x = 0, 0.3, 2, 5, 10%) nanoparticles and their processing into highly concentrated dispersions in ethanol by surface functionalization with 2-[2-(2-methoxyethoxy) ethoxy] acetic acid (MEEAA).


2010 ◽  
Vol 93 (12) ◽  
pp. 4047-4052 ◽  
Author(s):  
Padmaja Parameswaran Nampi ◽  
Padmanabhan Moothetty ◽  
Wilfried Wunderlich ◽  
Frank John Berry ◽  
Michael Mortimer ◽  
...  

2018 ◽  
Vol 29 (7) ◽  
pp. 075702 ◽  
Author(s):  
Feng Qingge ◽  
Cai Huidong ◽  
Lin Haiying ◽  
Qin Siying ◽  
Liu Zheng ◽  
...  

2013 ◽  
Vol 284-287 ◽  
pp. 230-234
Author(s):  
Yu Jen Chou ◽  
Chi Jen Shih ◽  
Shao Ju Shih

Recent years mesoporous bioactive glasses (MBGs) have become important biomaterials because of their high surface area and the superior bioactivity. Various studies have reported that when MBGs implanted in a human body, hydroxyl apatite layers, constituting the main inorganic components of human bones, will form on the MBG surfaces to increase the bioactivity. Therefore, MBGs have been widely applied in the fields of tissue regeneration and drug delivery. The sol-gel process has replaced the conventional glasses process for MBG synthesis because of the advantages of low contamination, chemical flexibility and lower calcination temperature. In the sol-gel process, several types of surfactants were mixed with MBG precursor solutions to generate micelle structures. Afterwards, these micelles decompose to form porous structures after calcination. Although calcination is significant for contamination, crystalline and surface area in MBG, to the best of the authors’ knowledge, only few systematic studies related to calcination were reported. This study correlated the calcination parameters and the microstructure of MBGs. Microstructure evaluation was characterized by transmission electron microscopy and nitrogen adsorption/desorption. The experimental results show that the surface area and the pore size of MBGs decreased with the increasing of the calcination temperature, and decreased dramatically at 800°C due to the formation of crystalline phases.


RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4443-4447 ◽  
Author(s):  
S. K. Shinde ◽  
D. P. Dubal ◽  
G. S. Ghodake ◽  
V. J. Fulari

We present a novel route for the synthesis of CuO thin films. The nano-flower like nanostructures provide high surface area, and the CuO shows excellent supercapacitive properties.


2007 ◽  
Vol 43 (3) ◽  
pp. 299-304 ◽  
Author(s):  
Pradeepan Periyat ◽  
K. V. Baiju ◽  
P. Mukundan ◽  
P. Krishna Pillai ◽  
K. G. K. Warrier

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 423 ◽  
Author(s):  
Kamonchanok Roongraung ◽  
Surawut Chuangchote ◽  
Navadol Laosiripojana

TiO2-based photocatalysts synthesized by the microwave-assisted sol-gel method was tested in the photocatalytic glucose conversion. Modifications of TiO2 with type-Y zeolite (ZeY) and metals (Ag, Cu, and Ag-Cu) were developed for increasing the dispersion of TiO2 nanoparticles and increasing the photocatalytic activity. Effects of the TiO2 dosage to zeolite ratio (i.e., TiO2/ZeY of 10, 20, 40, and 50 mol %) and the silica to alumina ratio in ZeY (i.e., SiO2:Al2O3 of 10, 100, and 500) were firstly studied. It was found that the specific surface area of TiO2/ZeY was 400–590 m2g−1, which was higher than that of pristine TiO2 (34.38 m2g−1). The good properties of 20%TiO2/ZeY photocatalyst, including smaller particles (13.27 nm) and high surface area, could achieve the highest photocatalytic glucose conversion (75%). Yields of gluconic acid, arabinose, xylitol, and formic acid obtained from 20%TiO2/ZeY were 9%, 26%, 4%, and 35%, respectively. For the effect of the silica to alumina ratio, the highest glucose conversion was obtained from SiO2:Al2O3 ratio of 100. Interestingly, it was found that the SiO2:Al2O3 ratio affected the selectivity of carboxylic products (gluconic acid and formic acid). At a low ratio of silica to alumina (SiO2:Al2O3 = 10), higher selectivity of the carboxylic products (gluconic acid = 29% and formic acid = 32%) was obtained (compared with other higher ratios). TiO2/ZeY was further loaded by metals using the microwave-assisted incipient wetness impregnation technique. The highest glucose conversion of 96.9 % was obtained from 1 wt. % Ag-TiO2 (40%)/ZeY. Furthermore, the bimetallic Ag-Cu-loaded TiO2/ZeY presented the highest xylitol yield of 12.93%.


Sign in / Sign up

Export Citation Format

Share Document