scholarly journals Plume dynamics in Hele-Shaw porous media convection

Author(s):  
Robert E. Ecke ◽  
Scott Backhaus

Mass transport in multi-species porous media is through molecular diffusion and plume dynamics. Predicting the rate of mass transport has application in determining the efficiency of the storage and sequestration of carbon dioxide. We study a water and propylene–glycol system enclosed in a Hele-Shaw cell with variable permeability that represents a laboratory analogue of the general properties of porous media convection. The interface between the fluids, tracked using an optical shadowgraph technique, is used to determine the mass transport rate, the spatial separation of solutal plumes, and the velocity and width characteristics of those plumes. One finds that the plume dynamics are closely related to the mass transport rate. This article is part of the themed issue ‘Energy and the subsurface’.

1994 ◽  
Vol 65 (2) ◽  
pp. 58-64
Author(s):  
Yoshimoto Wanibe ◽  
Esther Boschatzke ◽  
Franz Oeters ◽  
Takashi Itoh

Author(s):  
Hsin-Fu Huang ◽  
Chun-Liang Lai

Mass transport driven by oscillatory electroosmotic flows (EOF) in a two-dimensional micro-channel is studied theoretically. The results indicate that the velocity and concentration distributions across the channel-width become more and more non-uniform as the Womersley number W , or the oscillation frequency, increases. It is also revealed that, with a constant tidal displacement, the total mass transport rate increases with the Womersley number W due to both the stronger convective and the transverse dispersion effects. The total mass transport rate also increases with the tidal displacement (with a fixed oscillation frequency) because of the associated stronger convective effects. The cross-over phenomenon of the mass transport rates for different species becomes possible with sufficiently large Debye lengths and at sufficiently large values of W . Consequently, with proper choices of the Debye length, oscillation frequency and tidal displacement, oscillatory EOF may become a good candidate for the first-step separation of the mass species.


2006 ◽  
Vol 258-260 ◽  
pp. 586-591
Author(s):  
António Martins ◽  
Paulo Laranjeira ◽  
Madalena Dias ◽  
José Lopes

In this work the application of delay differential equations to the modelling of mass transport in porous media, where the convective transport of mass, is presented and discussed. The differences and advantages when compared with the Dispersion Model are highlighted. Using simplified models of the local structure of a porous media, in particular a network model made up by combining two different types of network elements, channels and chambers, the mass transport under transient conditions is described and related to the local geometrical characteristics. The delay differential equations system that describe the flow, arise from the combination of the mass balance equations for both the network elements, and after taking into account their flow characteristics. The solution is obtained using a time marching method, and the results show that the model is capable of describing the qualitative behaviour observed experimentally, allowing the analysis of the influence of the local geometrical and flow field characteristics on the mass transport.


1988 ◽  
Vol 127 ◽  
Author(s):  
P. J. Bourke ◽  
D. Gilling ◽  
N. L. Jefferies ◽  
D. A. Lever ◽  
T. R. Lineham

ABSTRACTAqueous phase mass transfer through the rocks surrounding a radioactive waste repository will take place by diffusion and convection. This paper presents a comprehensive set of measurements of the mass transfer characteristics for a single, naturally occurring, clay. These data have been compared with the results predicted by mathematical models of mass transport in porous media, in order to build confidence in these models.


Sign in / Sign up

Export Citation Format

Share Document