scholarly journals Harnessing temporal modes for multi-photon quantum information processing based on integrated optics

Author(s):  
G. Harder ◽  
V. Ansari ◽  
T. J. Bartley ◽  
B. Brecht ◽  
C. Silberhorn

In the last few decades, there has been much progress on low loss waveguides, very efficient photon-number detectors and nonlinear processes. Engineered sum-frequency conversion is now at a stage where it allows operation on arbitrary temporal broadband modes, thus making the spectral degree of freedom accessible for information coding. Hereby the information is often encoded into the temporal modes of a single photon. Here, we analyse the prospect of using multi-photon states or squeezed states in different temporal modes based on integrated optics devices. We describe an analogy between mode-selective sum-frequency conversion and a network of spatial beam splitters. Furthermore, we analyse the limits on the achievable squeezing in waveguides with current technology and the loss limits in the conversion process. This article is part of the themed issue ‘Quantum technology for the 21st century’.

2016 ◽  
Vol 2 (3) ◽  
pp. e1501223 ◽  
Author(s):  
Nobuyuki Matsuda

The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing.


Author(s):  
Andreas Jechow

The interaction between single or a fixed number of photons with a single absorber is of fundamental interest in quantum technology. The harnessing of light matter interactions at the single particle limit has several potential applications ranging from quantum communication and quantum metrology to quantum imaging. In this letter, a setup for heralded two-photon absorption at the single absorber level is proposed. The setup is based on a heralded two-photon source utilizing spontaneous parametric down-conversion, entanglement swapping and sum frequency generation for joint detection. The feasibility of the scheme is discussed by reviewing recent achievements in utilizing entangled and correlated photons for two-photon absorption as well as single photon absorption experiments at the limit of single absorbers in the context of applications in imaging (here mainly microscopy) and spectroscopy.


2012 ◽  
Vol 10 (03) ◽  
pp. 1230002 ◽  
Author(s):  
G. Q. ZHANG ◽  
X. J. ZHAI ◽  
C. J. ZHU ◽  
H. C. LIU ◽  
Y. T. ZHANG

A new type of single photon detector, silicon photomultiplier (SiPM), — which has photon-number-resolving capability at room temperature, was introduced. The SiPM is composed of hundreds to thousands of Geiger mode avalanche photo-diodes (GAPD) pixels in size from several to several tens of microns integrated in one silicon chip. The SiPM can resolve the photon-number of a short light pulse by spatial multiplexing. The influence of relative high dark count rate on the quantum bit error rate (QBER) can be mitigated greatly by gating detection events and slightly cooling the detector. The key parameters of SiPM were demonstrated and the results show that the SiPM can reach the requirements for quantum information processing and applications.


2002 ◽  
Vol 2 (Special) ◽  
pp. 556-559
Author(s):  
K. Nemoto ◽  
S. Braunstein

A simulated photon-number detection via homodyne detectors is considered as a way to improve the efficiency near the single-photon level of communication. Current photon-number detectors at infrared wavelengths are typically characterized by their low detection efficiencies, which significantly reduce the mutual information of a bosonic communication channel. In order to avoid the inefficiency inherent in such direct photon-number detection, we evaluate an alternative set-up based on efficient dual homodyne detection. We show that replacing inefficient direct detectors with homodyne-based simulated direct detectors can yield significant improvements, even near the single-photon level of operation. However we argue that there is a fundamental limit on the ability of homodyne detection to simulate ideal photon number detection, considering the exponential gap between quantum and classical computers. This applies to arbitrarily complicated simulation strategies based on homodyne detection.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jino Heo ◽  
Seong-Gon Choi

AbstractWe propose a photonic procedure using cross-Kerr nonlinearities (XKNLs) to encode single logical qubit information onto four-photon decoherence-free states. In quantum information processing, a decoherence-free subspace can secure quantum information against collective decoherence. Therefore, we design a procedure employing nonlinear optical gates, which are composed of XKNLs, quantum bus beams, and photon-number-resolving measurements with linear optical devices, to conserve quantum information by encoding quantum information onto four-photon decoherence-free states (single logical qubit information). Based on our analysis in quantifying the affection (photon loss and dephasing) of the decoherence effect, we demonstrate the experimental condition to acquire the reliable procedure of single logical qubit information having the robustness against the decoherence effect.


2013 ◽  
Vol 38 (6) ◽  
pp. 947 ◽  
Author(s):  
Alex S. Clark ◽  
Shayan Shahnia ◽  
Matthew J. Collins ◽  
Chunle Xiong ◽  
Benjamin J. Eggleton

Sign in / Sign up

Export Citation Format

Share Document