scholarly journals Prediction of the free-surface elevation for rotational water waves using the recovery of pressure at the bed

Author(s):  
D. Henry ◽  
G. P. Thomas

This paper considers the pressure–streamfunction relationship for a train of regular water waves propagating on a steady current, which may possess an arbitrary distribution of vorticity, in two dimensions. The application of such work is to both near shore and offshore environments, and in particular, for linear waves we provide a description of the role which the pressure function on the seabed plays in determining the free-surface profile elevation. Our approach is shown to provide a good approximation for a range of current conditions. This article is part of the theme issue ‘Nonlinear water waves’.

Author(s):  
Yang-Yih Chen ◽  
Meng-Syue Li ◽  
Hung-Chu Hsu ◽  
Chiu-On Ng

A third-order asymptotic solution in Lagrangian description for nonlinear water waves propagating over a sloping beach is derived. The particle trajectories are obtained as a function of the nonlinear ordering parameter ε and the bottom slope α to the third order of perturbation. A new relationship between the wave velocity and the motions of particles at the free surface profile in the waves propagating on the sloping bottom is also determined directly in the complete Lagrangian framework. This solution enables the description of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the successive deformation of wave profiles and water particle trajectories prior to breaking. A series of experiments are conducted to investigate the particle trajectories of nonlinear water waves propagating over a sloping bottom. It is shown that the present third-order asymptotic solution agrees very well with the experiments.


Author(s):  
Didier Clamond

Steady two-dimensional surface capillary–gravity waves in irrotational motion are considered on constant depth. By exploiting the holomorphic properties in the physical plane and introducing some transformations of the boundary conditions at the free surface, new exact relations and equations for the free surface only are derived. In particular, a physical plane counterpart of the Babenko equation is obtained. This article is part of the theme issue ‘Nonlinear water waves’.


2018 ◽  
Vol 8 (12) ◽  
pp. 2456 ◽  
Author(s):  
Hui Hu ◽  
Jianfeng Zhang ◽  
Tao Li

The objective of this study was to evaluate the applicability of a flow model with different numbers of spatial dimensions in a hydraulic features solution, with parameters such a free surface profile, water depth variations, and averaged velocity evolution in a dam-break under dry and wet bed conditions with different tailwater depths. Two similar three-dimensional (3D) hydrodynamic models (Flow-3D and MIKE 3 FM) were studied in a dam-break simulation by performing a comparison with published experimental data and the one-dimensional (1D) analytical solution. The results indicate that the Flow-3D model better captures the free surface profile of wavefronts for dry and wet beds than other methods. The MIKE 3 FM model also replicated the free surface profiles well, but it underestimated them during the initial stage under wet-bed conditions. However, it provided a better approach to the measurements over time. Measured and simulated water depth variations and velocity variations demonstrate that both of the 3D models predict the dam-break flow with a reasonable estimation and a root mean square error (RMSE) lower than 0.04, while the MIKE 3 FM had a small memory footprint and the computational time of this model was 24 times faster than that of the Flow-3D. Therefore, the MIKE 3 FM model is recommended for computations involving real-life dam-break problems in large domains, leaving the Flow-3D model for fine calculations in which knowledge of the 3D flow structure is required. The 1D analytical solution was only effective for the dam-break wave propagations along the initially dry bed, and its applicability was fairly limited.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1758
Author(s):  
Juan Macián-Pérez ◽  
Francisco Vallés-Morán ◽  
Santiago Sánchez-Gómez ◽  
Marco De-Rossi-Estrada ◽  
Rafael García-Bartual

The study of the hydraulic jump developed in stilling basins is complex to a high degree due to the intense velocity and pressure fluctuations and the significant air entrainment. It is this complexity, bound to the practical interest in stilling basins for energy dissipation purposes, which brings the importance of physical modeling into the spotlight. However, despite the importance of stilling basins in engineering, bibliographic studies have traditionally focused on the classical hydraulic jump. Therefore, the objective of this research was to study the characteristics of the hydraulic jump in a typified USBR II stilling basin, through a physical model. The free surface profile and the velocity distribution of the hydraulic jump developed within this structure were analyzed in the model. To this end, an experimental campaign was carried out, assessing the performance of both, innovative techniques such as the time-of-flight camera and traditional instrumentation like the Pitot tube. The results showed a satisfactory representation of the free surface profile and the velocity distribution, despite some discussed limitations. Furthermore, the instrumentation employed revealed the important influence of the energy dissipation devices on the flow properties. In particular, relevant differences were found for the hydraulic jump shape and the maximum velocity positions within the measured vertical profiles, when compared to classical hydraulic jumps.


Author(s):  
Nikolai I. Makarenko

The fully nonlinear problem on unsteady two-dimensional water waves generated by elliptic cylinder, that is horizontally submerged beneath a free surface, is considered. An analytical boundary integral equations method using a version of Milne-Thomson transformation is developed. Boundary equations (the BEq system) determine immediately exact wave elevation and fluid velocity at free surface. Small-time solution expansion is obtained in the case of accelerated cylinder starting from rest.


Sign in / Sign up

Export Citation Format

Share Document