scholarly journals Validation and application of the lattice Boltzmann algorithm for a turbulent immiscible Rayleigh–Taylor system

Author(s):  
H. S. Tavares ◽  
L. Biferale ◽  
M. Sbragaglia ◽  
A. A. Mailybaev

We develop a multicomponent lattice Boltzmann (LB) model for the two-dimensional Rayleigh–Taylor turbulence with a Shan–Chen pseudopotential implemented on GPUs. In the immiscible case, this method is able to accurately overcome the inherent numerical complexity caused by the complicated structure of the interface that appears in the fully developed turbulent regime. The accuracy of the LB model is tested both for early and late stages of instability. For the developed turbulent motion, we analyse the balance between different terms describing variations of the kinetic and potential energies. Then we analyse the role of the interface in the energy balance and also the effects of the vorticity induced by the interface in the energy dissipation. Statistical properties are compared for miscible and immiscible flows. Our results can also be considered as a first validation step to extend the application of LB model to three-dimensional immiscible Rayleigh-Taylor turbulence. This article is part of the theme issue ‘Progress in mesoscale methods for fluid dynamics simulation’.

2003 ◽  
Vol 17 (01n02) ◽  
pp. 135-138 ◽  
Author(s):  
HIDEMITSU HAYASHI ◽  
SATORU YAMAMOTO ◽  
SHI-AKI HYODO

Simulations of flow through three-dimensional porous structures of NAFION polymer membranes are performed with a Lattice-Boltzmann method (LBM) for incompressible fluid. Geometry data of NAFION are constructed from a result of a dissipative particle dynamics simulation for three values of the water content, 10%, 20%, and 30%, and are used as the geometry input for the LBM. Permeability of the porous structure is extracted from results of the LBM simulation using Darcy's low. The permeability K is shown to be expressed as K = L2 × Ktpl with a characteristic length L and the dimensionless permeability Ktpl depending only on the topological structure of the porous media. Dependence of Ktpl is examined on the pressure gradient, the fluid viscosity, and the resolution of the computational grid.


Author(s):  
Fabio Guglietta ◽  
Marek Behr ◽  
Luca Biferale ◽  
Giacomo Falcucci ◽  
Mauro Sbragaglia

The tumbling to tank-treading (TB-TT) transition for red blood cells (RBCs) has been widely investigated, with a main focus on the effects of the viscosity ratio λ (i.e., the ratio between the viscosities of the fluids inside and outside the membrane) and the shear rate γ ˙ applied to the RBC. However, the membrane viscosity μ m plays a major role in a realistic description of RBC dynamics, and only a few works have systematically focused on its effects on the TB-TT transition. In this work, we provide a parametric investigation on the effect of membrane viscosity μ m on the TB-TT transition for a single RBC. It is found that, at fixed viscosity ratios λ , larger values of μ m lead to an increased range of values of capillary number at which the TB-TT transition occurs; moreover, we found that increasing λ or increasing μ m results in a qualitatively but not quantitatively similar behaviour. All results are obtained by means of mesoscale numerical simulations based on the lattice Boltzmann models. This article is part of the theme issue ‘Progress in mesoscale methods for fluid dynamics simulation’.


Author(s):  
N. Sawant ◽  
B. Dorschner ◽  
I. V. Karlin

A new lattice Boltzmann model for reactive ideal gas mixtures is presented. The model is an extension to reactive flows of the recently proposed multi-component lattice Boltzmann model for compressible ideal gas mixtures with Stefan–Maxwell diffusion for species interaction. First, the kinetic model for the Stefan–Maxwell diffusion is enhanced to accommodate a source term accounting for the change in the mixture composition due to chemical reaction. Second, by including the heat of formation in the energy equation, the thermodynamic consistency of the underlying compressible lattice Boltzmann model for momentum and energy allows a realization of the energy and temperature change due to chemical reactions. This obviates the need for ad-hoc modelling with source terms for temperature or heat. Both parts remain consistently coupled through mixture composition, momentum, pressure, energy and enthalpy. The proposed model uses the standard three-dimensional lattices and is validated with a set of benchmarks including laminar burning speed in the hydrogen–air mixture and circular expanding premixed flame. This article is part of the theme issue ‘Progress in mesoscale methods for fluid dynamics simulation’.


1996 ◽  
Vol 34 (1) ◽  
pp. 27
Author(s):  
Sue Yon Shim ◽  
Ki Joon Sung ◽  
Young Ju Kim ◽  
In Soo Hong ◽  
Myung Soon Kim ◽  
...  

Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2016 ◽  
Vol 2 (2) ◽  
pp. 40
Author(s):  
Miriam Aparicio

This study tests some hypotheses included in the psycho-social-communicational paradigm, which emphasizes the cognitive effects of the media and the role of the psychosocial subject as the recipient


Sign in / Sign up

Export Citation Format

Share Document