The role of molecular chaperones in protein transport into the endoplasmic reticulum

1993 ◽  
Vol 339 (1289) ◽  
pp. 335-341 ◽  

In eukaryotic cells export of the vast majority of newly synthesized secretory proteins is initiated at the level of the membrane of the endoplasmic reticulum (microsomal membrane). The precursors of secretory proteins are not transported across the microsomal m em brane in their native state. Typically, signal peptides in the precursor proteins are involved in preserving the transport-competent state. Furthermore, there are two alternatively acting mechanisms involved in preserving transport competence in the cytosol. The first mechanism involves two ribonucleoparticles (ribosome and signal recognition particle) and their receptors on the microsomal surface and requires the hydrolysis of GTP. The second mechanism does not involve ribonucleoparticles and their receptors but depends on the hydrolysis of A TP and on cA-acting molecular chaperones, such as heat shock cognate protein 70 (hsc 70). In both mechanisms a translocase in the microsomal membrane mediates protein translocation. This translocase includes a signal peptide receptor on the cu-side of the microsomal membrane and a component that also depends on the hydrolysis of ATP. At least in certain cases, an additional nucleoside triphosphate-requiring step is involved which is related to the trans -acting molecular chaperone BiP.

1986 ◽  
Vol 103 (1) ◽  
pp. 241-253 ◽  
Author(s):  
M Hortsch ◽  
D Avossa ◽  
D I Meyer

Secretory proteins are synthesized on ribosomes bound to the membrane of the endoplasmic reticulum (ER). After the selection of polysomes synthesizing secretory proteins and their direction to the membrane of the ER via signal recognition particle (SRP) and docking protein respectively, the polysomes become bound to the ER membrane via an unknown, protein-mediated mechanism. To identify proteins involved in protein translocation, beyond the (SRP-docking protein-mediated) recognition step, controlled proteolysis was used to functionally inactivate rough microsomes that had previously been depleted of docking protein. As the membranes were treated with increasing levels of protease, they lost their ability to be functionally reconstituted with the active cytoplasmic fragment of docking protein (DPf). This functional inactivation did not correlate with a loss of either signal peptidase activity, nor with the ability of the DPf to reassociate with the membrane. It did correlate, however, with a loss of the ability of the microsomes to bind ribosomes. Ribophorins are putative ribosome-binding proteins. Immunoblots developed with monoclonal antibodies against canine ribophorins I and II demonstrated that no correlation exists between the protease-induced inability to bind ribosomes and the integrity of the ribophorins. Ribophorin I was 85% resistant and ribophorin II 100% resistant to the levels of protease needed to totally eliminate ribosome binding. Moreover, no direct association was found between ribophorins and ribosomes; upon detergent solubilization at low salt concentrations, ribophorins could be sedimented in the presence or absence of ribosomes. Finally, the alkylating agent N-ethylmaleimide was shown to be capable of inhibiting translocation (beyond the SRP-docking protein-mediated recognition step), but had no affect on the ability of ribosomes to bind to ER membranes. We conclude that potentially two additional proteinaceous components, as yet unidentified, are involved in protein translocation. One is protease sensitive and possibly involved in ribosome binding, the other is N-ethylmaleimide sensitive and of unknown function.


1985 ◽  
Vol 100 (6) ◽  
pp. 1913-1921 ◽  
Author(s):  
V Siegel ◽  
P Walter

Signal recognition particle (SRP) is a ribonucleoprotein consisting of six distinct polypeptides and one molecule of small cytoplasmic 7SL RNA. It was previously shown to promote the co-translational translocation of secretory proteins across the endoplasmic reticulum by (a) arresting the elongation of the presecretory nascent chain at a specific point, and (b) interacting with the SRP receptor, an integral membrane protein of the endoplasmic reticulum which is active in releasing the elongation arrest. Recently a procedure was designed by which the particle could be disassembled into its protein and RNA components. We have further separated the SRP proteins into four homogeneous fractions. When recombined with each other and with 7SL RNA, they formed fully active SRP. Particles missing specific proteins were assembled in the hope that some of these would retain some functional activity. SRP(-9/14), the particle lacking the 9-kD and 14-kD polypeptides, was fully active in promoting translocation, but was completely inactive in elongation arrest. This implied that elongation arrest is not a prerequisite for protein translocation. SRP receptor was required for SRP(-9/14)-mediated translocation to occur, and thus must play some role in the translocation process in addition to releasing the elongation arrest.


2020 ◽  
Vol 21 (24) ◽  
pp. 9351
Author(s):  
Shingo Kanemura ◽  
Motonori Matsusaki ◽  
Kenji Inaba ◽  
Masaki Okumura

Complicated and sophisticated protein homeostasis (proteostasis) networks in the endoplasmic reticulum (ER), comprising disulfide catalysts, molecular chaperones, and their regulators, help to maintain cell viability. Newly synthesized proteins inserted into the ER need to fold and assemble into unique native structures to fulfill their physiological functions, and this is assisted by protein disulfide isomerase (PDI) family. Herein, we focus on recent advances in understanding the detailed mechanisms of PDI family members as guides for client folding and assembly to ensure the efficient production of secretory proteins.


1999 ◽  
Vol 10 (4) ◽  
pp. 1043-1059 ◽  
Author(s):  
Wolfgang P. Barz ◽  
Peter Walter

Many eukaryotic cell surface proteins are anchored in the lipid bilayer through glycosylphosphatidylinositol (GPI). GPI anchors are covalently attached in the endoplasmic reticulum (ER). The modified proteins are then transported through the secretory pathway to the cell surface. We have identified two genes inSaccharomyces cerevisiae, LAG1 and a novel gene termed DGT1 (for “delayed GPI-anchored protein transport”), encoding structurally related proteins with multiple membrane-spanning domains. Both proteins are localized to the ER, as demonstrated by immunofluorescence microscopy. Deletion of either gene caused no detectable phenotype, whereas lag1Δ dgt1Δ cells displayed growth defects and a significant delay in ER-to-Golgi transport of GPI-anchored proteins, suggesting thatLAG1 and DGT1 encode functionally redundant or overlapping proteins. The rate of GPI anchor attachment was not affected, nor was the transport rate of several non–GPI-anchored proteins. Consistent with a role of Lag1p and Dgt1p in GPI-anchored protein transport, lag1Δ dgt1Δ cells deposit abnormal, multilayered cell walls. Both proteins have significant sequence similarity to TRAM, a mammalian membrane protein thought to be involved in protein translocation across the ER membrane. In vivo translocation studies, however, did not detect any defects in protein translocation in lag1Δ dgt1Δcells, suggesting that neither yeast gene plays a role in this process. Instead, we propose that Lag1p and Dgt1p facilitate efficient ER-to-Golgi transport of GPI-anchored proteins.


1989 ◽  
Vol 109 (5) ◽  
pp. 2033-2043 ◽  
Author(s):  
U C Krieg ◽  
A E Johnson ◽  
P Walter

The molecular environment of secretory proteins during translocation across the ER membrane was examined by photocross-linking. Nascent preprolactin chains of various lengths, synthesized by in vitro translation of truncated messenger RNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)-Lys-tRNA, signal recognition particle, and microsomal membranes, were used to position photoreactive probes at various locations within the membrane. Upon photolysis, each nascent chain species was cross-linked to an integral membrane glycoprotein with a deduced mass of 39 kD (mp39) via photoreactive lysines located in either the signal sequence or the mature prolactin sequence. Thus, different portions of the nascent preprolactin chain are in close proximity to the same membrane protein during the course of translocation, and mp39 therefore appears to be part of the translocon, the specific site of protein translocation across the ER membrane. The similarity of the molecular and cross-linking properties of mp39 and the glyco-protein previously identified as a signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature [Lond.]. 328: 830-833) suggests that these two proteins may be identical. Our data indicate, however, that mp39 does not (or not only) function as a signal sequence receptor, but rather may be part of a putative translocation tunnel.


2013 ◽  
Vol 24 (19) ◽  
pp. 3069-3084 ◽  
Author(s):  
Judith Kraut-Cohen ◽  
Evgenia Afanasieva ◽  
Liora Haim-Vilmovsky ◽  
Boris Slobodin ◽  
Ido Yosef ◽  
...  

mRNAs encoding secreted/membrane proteins (mSMPs) are believed to reach the endoplasmic reticulum (ER) in a translation-dependent manner to confer protein translocation. Evidence exists, however, for translation- and signal recognition particle (SRP)–independent mRNA localization to the ER, suggesting that there are alternate paths for RNA delivery. We localized endogenously expressed mSMPs in yeast using an aptamer-based RNA-tagging procedure and fluorescence microscopy. Unlike mRNAs encoding polarity and secretion factors that colocalize with cortical ER at the bud tip, mSMPs and mRNAs encoding soluble, nonsecreted, nonpolarized proteins localized mainly to ER peripheral to the nucleus (nER). Synthetic nontranslatable uracil-rich mRNAs were also demonstrated to colocalize with nER in yeast. This mRNA–ER association was verified by subcellular fractionation and reverse transcription-PCR, single-molecule fluorescence in situ hybridization, and was not inhibited upon SRP inactivation. To better understand mSMP targeting, we examined aptamer-tagged USE1, which encodes a tail-anchored membrane protein, and SUC2, which encodes a soluble secreted enzyme. USE1 and SUC2 mRNA targeting was not abolished by the inhibition of translation or removal of elements involved in translational control. Overall we show that mSMP targeting to the ER is both translation- and SRP-independent, and regulated by cis elements contained within the message and trans-acting RNA-binding proteins (e.g., She2, Puf2).


1989 ◽  
Vol 259 (3) ◽  
pp. 913-916 ◽  
Author(s):  
J A Higgins ◽  
B W Hitchin ◽  
M G Low

Phosphatidylinositol-specific phospholipase C (PI-PLC) produced by Bacillus thuringiensis has been used as a probe for the distribution of phosphatidylinositol in hepatocyte membranes. Approx. 50% of this phospholipid was hydrolysed in microsomal vesicles (endoplasmic reticulum) with no significant hydrolysis of the remaining membrane phospholipids. Latency of mannose-6-phosphatase was retained during treatment indicating that the vesicles remained impermeable. Stripping of the ribosomes did not increase hydrolysis of phosphatidylinositol; however, when the vesicles were opened using dilute sodium carbonate, hydrolysis increased to greater than 90%. Hydrolysis of phosphatidylinositol of Golgi membranes was 35% and of plasma membranes was 50%. After treatment with PI-PLC, radiolabelled secretory proteins were retained in Golgi membranes and trapped lactate dehydrogenase was retained in plasma-membrane preparations indicating that the vesicles remained closed. Hydrolysis of phosphatidylinositol increased to greater than 90% when the membranes were opened by treatment with dilute sodium carbonate. These observations indicate that PI-PLC of Bacillus thuringiensis is a suitable probe for the distribution of phosphatidylinositol in membranes, and that in liver membranes this phospholipid occurs on each side of the bilayer, a topography consistent with its diverse roles.


Science ◽  
2018 ◽  
Vol 363 (6422) ◽  
pp. 84-87 ◽  
Author(s):  
Samuel Itskanov ◽  
Eunyong Park

The Sec61 protein-conducting channel mediates transport of many proteins, such as secretory proteins, across the endoplasmic reticulum (ER) membrane during or after translation. Posttranslational transport is enabled by two additional membrane proteins associated with the channel, Sec63 and Sec62, but its mechanism is poorly understood. We determined a structure of the Sec complex (Sec61-Sec63-Sec71-Sec72) from Saccharomyces cerevisiae by cryo–electron microscopy (cryo-EM). The structure shows that Sec63 tightly associates with Sec61 through interactions in cytosolic, transmembrane, and ER-luminal domains, prying open Sec61’s lateral gate and translocation pore and thus activating the channel for substrate engagement. Furthermore, Sec63 optimally positions binding sites for cytosolic and luminal chaperones in the complex to enable efficient polypeptide translocation. Our study provides mechanistic insights into eukaryotic posttranslational protein translocation.


Sign in / Sign up

Export Citation Format

Share Document